IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v92y2019i6d10.1140_epjb_e2019-90564-5.html
   My bibliography  Save this article

Canonical pair condensation in a flat-band BCS superconductor

Author

Listed:
  • Jacques Tempere

    (Theory of Quantum and Complex Systems, Universiteit Antwerpen)

  • Dolf Huybrechts

    (Theory of Quantum and Complex Systems, Universiteit Antwerpen)

Abstract

The standard approach of the Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity is to introduce a self-consistent mean-field approximation, and a variational ansatz for the many-body ground state. The resulting mean-field Hamiltonian no longer commutes with the total number operator, and the variational search takes place in Fock space rather than in a Hilbert space of states with fixed number of particles. This is a disadvantage when studying small systems where the canonical ensemble predictions differ from the corresponding grand-canonical results. To remedy this, alternative approaches such as Richardson’s method have been put forward. Here, we derive the exact many-body ground state of a model Hamiltonian corresponding to the deep-BCS or flat-band regime, without having to resort to Richardson’s set of coupled nonlinear equations. This allows to write the exact many-body ground state in a way that makes the difference with the BCS variational wave function particularly clear. We show that the exact wave function consists of a superposition of many-pair states in such a way that the mean-field averaging corresponds to a summation over these many-pair states. This explains why many expectation values calculated with the BCS variational wave function give the same result as when calculated with the exact wave function, even though these wave functions are different. In the canonical (fixed-number) approach, pairing is investigated using the second-order reduced density matrix and calculating its largest eigenvalue. When interpreted as the order parameter of the superconducting state, this can be compared directly to the behavior of the mean-field gap. Finally, we show that a clear difference between the canonical approach and the BCS grand canonical estimates appears when evaluating pair condensate fluctuations as well as the pair entanglement entropy. Graphical abstract

Suggested Citation

  • Jacques Tempere & Dolf Huybrechts, 2019. "Canonical pair condensation in a flat-band BCS superconductor," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(6), pages 1-9, June.
  • Handle: RePEc:spr:eurphb:v:92:y:2019:i:6:d:10.1140_epjb_e2019-90564-5
    DOI: 10.1140/epjb/e2019-90564-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2019-90564-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2019-90564-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Solid State and Materials;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:92:y:2019:i:6:d:10.1140_epjb_e2019-90564-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.