IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v90y2017i3d10.1140_epjb_e2017-70738-y.html
   My bibliography  Save this article

Electromagnetically induced transparency in double quantum dot under intense laser and magnetic fields: from Λ to Ξ configuration

Author

Listed:
  • Doina Bejan

    (University of Bucharest, Faculty of Physics)

Abstract

We theoretically investigated the effects of non-resonant intense laser and magnetic fields on the optical properties of asymmetric GaAs/AlGaAs double quantum dot related to the occurrence of electromagnetically induced transparency, using compact density-matrix formalism and effective mass approximation. The chosen structure has the advantage to present x-lambda(Λ)-configuration or y-ladder(Ξ)-configuration for EIT occurrence, depending on lasers polarization, at low values of the non-resonant laser, and to change the configuration from Λ to Ξ at the increase of the x-polarized non-resonant laser intensity. We discussed in detail the influences of the control laser field intensity, non-resonant laser strength and polarization, and magnetic field intensity on the absorption coefficient, refraction index and group index. It is found that: (i) the control laser or the non-resonant laser at the same control laser intensity influences more the system being in x-Ξ-configuration than in x-Λ-configuration and have intermediate effects on y-Ξ-configuration; (ii) the magnetic field has the greatest influence on the system being in x-Λ-configuration and the lowest for y-Ξ-configuration; (iii) the increment of the non-resonant intense laser or magnetic fields induces a red-shift of the transparency windows and sub (super) luminal frequency intervals for the Λ-configuration but a blue-shift for both Ξ-configurations.

Suggested Citation

  • Doina Bejan, 2017. "Electromagnetically induced transparency in double quantum dot under intense laser and magnetic fields: from Λ to Ξ configuration," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(3), pages 1-12, March.
  • Handle: RePEc:spr:eurphb:v:90:y:2017:i:3:d:10.1140_epjb_e2017-70738-y
    DOI: 10.1140/epjb/e2017-70738-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2017-70738-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2017-70738-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Mesoscopic and Nanoscale Systems;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:90:y:2017:i:3:d:10.1140_epjb_e2017-70738-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.