IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v89y2016i11d10.1140_epjb_e2016-70332-y.html
   My bibliography  Save this article

Polaron assisted charge transfer in model biological systems

Author

Listed:
  • Guangqi Li

    (Northwestern University)

  • Bijan Movaghar

    (Northwestern University)

Abstract

We use a tight binding Hamiltonian to simulate the electron transfer from an initial charge-separating exciton to a final target state through a two-arm transfer model. The structure is copied from the model frequently used to describe electron harvesting in photosynthesis (photosystems I). We use this network to provide proof of principle for dynamics, in quantum system/bath networks, especially those involving interference pathways, and use these results to make predictions on artificially realizable systems. Each site is coupled to the phonon bath via several electron-phonon couplings. The assumed large energy gaps and weak tunneling integrals linking the last 3 sites give rise to“Stark Wannier like” quantum localization; electron transfer to the target cluster becomes impossible without bath coupling. As a result of the electron-phonon coupling, local electronic energies relax when the site is occupied, and transient polaronic states are formed as photo-generated electrons traverse the system. For a symmetric constructively interfering two pathway network, the population is shared equally between two sets of equivalent sites and therefore the polaron energy shift is smaller. The smaller energy shift however makes the tunnel transfer to the last site slower or blocks it altogether. Slight disorder (or thermal noise) can break the symmetry, permitting essentially a “one path”, and correspondingly more efficient transfer.

Suggested Citation

  • Guangqi Li & Bijan Movaghar, 2016. "Polaron assisted charge transfer in model biological systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(11), pages 1-10, November.
  • Handle: RePEc:spr:eurphb:v:89:y:2016:i:11:d:10.1140_epjb_e2016-70332-y
    DOI: 10.1140/epjb/e2016-70332-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2016-70332-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2016-70332-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Mesoscopic and Nanoscale Systems;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:89:y:2016:i:11:d:10.1140_epjb_e2016-70332-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.