IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v87y2014i1p1-2610.1140-epjb-e2013-40833-4.html
   My bibliography  Save this article

Gravitational phase transitions with an exclusion constraint in position space

Author

Listed:
  • Pierre-Henri Chavanis

Abstract

We discuss the statistical mechanics of a system of self-gravitating particles with an exclusion constraint in position space in a space of dimension d. The exclusion constraint puts an upper bound on the density of the system and can stabilize it against gravitational collapse. We plot the caloric curves giving the temperature as a function of the energy and investigate the nature of phase transitions as a function of the size of the system and of the dimension of space in both microcanonical and canonical ensembles. We consider stable and metastable states and emphasize the importance of the latter for systems with long-range interactions. For d ≤ 2, there is no phase transition. For d > 2, phase transitions can take place between a “gaseous” phase unaffected by the exclusion constraint and a “condensed” phase dominated by this constraint. The condensed configurations have a core-halo structure made of a “rocky core” surrounded by an “atmosphere”, similar to a giant gaseous planet. For large systems there exist microcanonical and canonical first order phase transitions. For intermediate systems, only canonical first order phase transitions are present. For small systems there is no phase transition at all. As a result, the phase diagram exhibits two critical points, one in each ensemble. There also exist a region of negative specific heats and a situation of ensemble inequivalence for sufficiently large systems. We show that a statistical equilibrium state exists for any values of energy and temperature in any dimension of space. This differs from the case of the self-gravitating Fermi gas for which there is no statistical equilibrium state at low energies and low temperatures when d ≥ 4. By a proper interpretation of the parameters, our results have application for the chemotaxis of bacterial populations in biology described by a generalized Keller-Segel model including an exclusion constraint in position space. They also describe colloids at a fluid interface driven by attractive capillary interactions when there is an excluded volume around the particles. Connexions with two-dimensional turbulence are also mentioned. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Pierre-Henri Chavanis, 2014. "Gravitational phase transitions with an exclusion constraint in position space," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(1), pages 1-26, January.
  • Handle: RePEc:spr:eurphb:v:87:y:2014:i:1:p:1-26:10.1140/epjb/e2013-40833-4
    DOI: 10.1140/epjb/e2013-40833-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2013-40833-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2013-40833-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:87:y:2014:i:1:p:1-26:10.1140/epjb/e2013-40833-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.