IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v41y2004i1p123-133.html
   My bibliography  Save this article

Localized spin modes on the insulating antiferromagnetic stepped surface model

Author

Listed:
  • M. Tamine

Abstract

We present a numerical method to calculate the spin fluctuation dynamics on a stepped surface. The model discussed here consists of an extended antiferromagnetic surface step at the surface boundary of an insulating antiferromagnetic substrate. The stepped surface is formed by two straight steps dropped randomly and the spins moments of the steps and the substrate are considered as local with no electronic effects. The full magnetic problem arising from the absence of translational symmetry due to the presence of a magnetic surface and steps is considered and studied. The calculations concern in particular the energies of localized spin-wave modes near the surface steps and employ the matching procedure in the random-phase approximation and mean field approximation. Only the nearest-neighbor exchange interactions are considered between the spins in the model. The analytical formalism presented here is adapted from an earlier work on the vibrational spectra of two isolated steps, a structure that can be considered as a low dimensional system and solved for the three dimensional evanescent crystal spin field in the bulk and the surface domains around the steps. This spin field arises from the breakdown of the magnetic translation symmetry of the system. The results are used to calculate the spin mode energies associated with the steps and surface terraces. We show the presence of localized acoustic and optical spin wave modes propagating along the surface and the steps as well as the interface surface-steps, their fields are also described as evanescent in the plane normal to the surface step layers and depend on the nature of the exchange interaction near the steps. Copyright Springer-Verlag Berlin/Heidelberg 2004

Suggested Citation

  • M. Tamine, 2004. "Localized spin modes on the insulating antiferromagnetic stepped surface model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 41(1), pages 123-133, September.
  • Handle: RePEc:spr:eurphb:v:41:y:2004:i:1:p:123-133
    DOI: 10.1140/epjb/e2004-00303-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2004-00303-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2004-00303-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:41:y:2004:i:1:p:123-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.