IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i1d10.1007_s10668-022-02820-7.html
   My bibliography  Save this article

Individual urban trees detection based on point clouds derived from UAV-RGB imagery and local maxima algorithm, a case study of Fateh Garden, Iran

Author

Listed:
  • Zahra Azizi

    (Islamic Azad University)

  • Mojdeh Miraki

    (Sanandaj Branch Islamic Azad University)

Abstract

As a remote sensing technique, unmanned aerial vehicles (UAVs) have great potential in several fields, such as monitoring vegetation in an urban area at low altitudes at a reasonable cost. In this study,we assessed the potential of individual tree detection by the structure of the motion algorithm (SfM) based on UAV images and derived point cloud. Urban broadleaved forests (Fateh garden) were photographed in the spring of 2018 with different structures, a mixed uneven-aged dense stand (MUDS), a mixed uneven-aged sparse stand (MUSS), and a pure even-aged dense stand (PDEs). The results of using the local maxima algorithm for the different structures showed a detection accuracy rate of 0.90, 0.54, and 0.32 for PDES, MUDS, and MUSS, respectively. Based on the results, the accuracy of tree detection is affected by the height of the trees (individuals with a height of fewer than 5 meters were not detected), and the species (Poplar trees were detected better than other species), as well as the searching window size. The fixed tree window size of 3×3 was the best window size, and the fixed smoothing window size was variable for each site. Using mean and Gaussian filters did not noticeably affect the results. In general, our study showed that the canopy height model (CHM) from UAV can detect trees with very high accuracy in urban forests with homogenous even-aged structures, while in uneven-aged stands, the accuracy of tree detection is medium to low.

Suggested Citation

  • Zahra Azizi & Mojdeh Miraki, 2024. "Individual urban trees detection based on point clouds derived from UAV-RGB imagery and local maxima algorithm, a case study of Fateh Garden, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(1), pages 2331-2344, January.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:1:d:10.1007_s10668-022-02820-7
    DOI: 10.1007/s10668-022-02820-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02820-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02820-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:1:d:10.1007_s10668-022-02820-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.