IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i9d10.1007_s10668-022-02455-8.html
   My bibliography  Save this article

Prioritization-based management of the watershed using health assessment analysis at sub-watershed scale

Author

Listed:
  • Zahra Ebrahimi Gatgash

    (Tarbiat Modares University)

  • Seyed Hamidreza Sadeghi

    (Tarbiat Modares University)

Abstract

Examining the problems and prioritization of various parts of the watershed is one of the essential factors for presenting programs and action plans for the adaptive management of the watershed. In other words, presenting executive measures should be based on specific problem-dependent variables, determinant criteria, and effective indicators in the watershed. However, the spatial prioritization of watersheds using a problem-based health assessment approach has yet to be described. Understanding the challenges of the watershed is thus an inescapable requirement for good planning and implementation of natural resource projects, which leads to the prevention of degradation in constantly changing ecosystems and, ultimately, successful natural resource management. The health assessment of the watershed would be the best framework to identify problems and effective variables leading to sustainable watershed management, so that, at the watershed scale, a health assessment is a valuable method for assessing and identifying effective human, ecological, and environmental resource management strategies. It leads to a proper classification of effective elements and the assessment of degrees of controllability, allowing watershed managers to focus their efforts on priority sub-watersheds to efficiently address current challenges. However, such a comprehensive approach has seldom been considered. The current study, therefore, employed the health analysis initiative for the prioritization of sub-watersheds of the Mikhsaz Watershed, Mazandaran Province, Iran. The watershed health was conceptualized and consequently outlined based on various effective and problem-oriented criteria using the pressure–state–response (PSR) framework. Toward that, the PSR framework was customized and corresponding watershed indicators of pressure (P), state (S), and response (R) were conceptualized according to 17 climatic, hydrologic, physical, and anthropogenic factors. The results showed that biologic density and ratio of the number of permitted to unauthorized livestock contributed to pressure indicator at the tune of 36.54%. Hydrologic factors controlled state and response statuses at a contribution rate of 56.07 and 80.11%, respectively. Accordingly, pressure, state, and response indices were found to be 0.68, 0.61, and 0.75 leading to a dominant relatively healthy status of the watershed health (i.e., 46%) with an overall index of 0.68. Besides, pressure, state, response indices were calculated, and associated effective variables were recognized for each sub-watershed led to a prioritization zoning map. The sub-watershed prioritization map can be utilized for designating optimal strategy for the sustainable and of course problem-oriented management of the study watershed. Graphical abstract

Suggested Citation

  • Zahra Ebrahimi Gatgash & Seyed Hamidreza Sadeghi, 2023. "Prioritization-based management of the watershed using health assessment analysis at sub-watershed scale," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9673-9702, September.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:9:d:10.1007_s10668-022-02455-8
    DOI: 10.1007/s10668-022-02455-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02455-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02455-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benhong Peng & Qianqian Huang & Ehsan Elahi & Guo Wei, 2019. "Ecological Environment Vulnerability and Driving Force of Yangtze River Urban Agglomeration," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    2. Manoj Jain & Debjyoti Das, 2010. "Estimation of Sediment Yield and Areas of Soil Erosion and Deposition for Watershed Prioritization using GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2091-2112, August.
    3. Mosaffaie, Jamal & Salehpour Jam, Amin & Tabatabaei, Mahmoud Reza & Kousari, Mahammad Reza, 2021. "Trend assessment of the watershed health based on DPSIR framework," Land Use Policy, Elsevier, vol. 100(C).
    4. Dapeng Huang & Renhe Zhang & Zhiguo Huo & Fei Mao & Youhao E & Wei Zheng, 2012. "An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1575-1586, November.
    5. Ming Zhang & Wenbo Xiang & Meilan Chen & Zisen Mao, 2018. "Measuring Social Vulnerability to Flood Disasters in China," Sustainability, MDPI, vol. 10(8), pages 1-14, July.
    6. Ashok Mishra & S. Kar & V. Singh, 2007. "Prioritizing Structural Management by Quantifying the Effect of Land Use and Land Cover on Watershed Runoff and Sediment Yield," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(11), pages 1899-1913, November.
    7. Janssen, J.A.E.B. & Krol, M.S. & Schielen, R.M.J. & Hoekstra, A.Y. & de Kok, J.-L., 2010. "Assessment of uncertainties in expert knowledge, illustrated in fuzzy rule-based models," Ecological Modelling, Elsevier, vol. 221(9), pages 1245-1251.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    2. Yue Chen & Kangning Xiong & Xiaodong Ren & Cai Cheng, 2021. "Vulnerability Comparison between Karst and Non-Karst Nature Reserves—With a Special Reference to Guizhou Province, China," Sustainability, MDPI, vol. 13(5), pages 1-12, February.
    3. Ali M. Rajabi & A. Yavari & A. Cheshomi, 2022. "Sediment yield and soil erosion assessment by using empirical models for Shazand watershed, a semi-arid area in center of Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1685-1704, June.
    4. V. Prasannakumar & H. Vijith & N. Geetha & R. Shiny, 2011. "Regional Scale Erosion Assessment of a Sub-tropical Highland Segment in the Western Ghats of Kerala, South India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3715-3727, November.
    5. Demetris Zarris & Marianna Vlastara & Dionysia Panagoulia, 2011. "Sediment Delivery Assessment for a Transboundary Mediterranean Catchment: The Example of Nestos River Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3785-3803, November.
    6. Batara Surya & Despry Nur Annisa Ahmad & Harry Hardian Sakti & Hernita Sahban, 2020. "Land Use Change, Spatial Interaction, and Sustainable Development in the Metropolitan Urban Areas, South Sulawesi Province, Indonesia," Land, MDPI, vol. 9(3), pages 1-43, March.
    7. Aishwarya Narendr & S. Vinay & Bharath Haridas Aithal & Sutapa Das, 2022. "Multi-dimensional parametric coastal flood risk assessment at a regional scale using GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9569-9597, July.
    8. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    9. Xiao-Chen Yuan & Bao-Jun Tang & Yi-Ming Wei & Xiao-Jie Liang & Hao Yu & Ju-Liang Jin, 2015. "China’s regional drought risk under climate change: a two-stage process assessment approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 667-684, March.
    10. Santosh Thampi & Kolladi Raneesh & T. Surya, 2010. "Influence of Scale on SWAT Model Calibration for Streamflow in a River Basin in the Humid Tropics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4567-4578, December.
    11. Vesna Đukić & Zoran Radić, 2014. "GIS Based Estimation of Sediment Discharge and Areas of Soil Erosion and Deposition for the Torrential Lukovska River Catchment in Serbia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4567-4581, October.
    12. Lokesh Jain & Harish Kumar & R. K. Singla, 2015. "Assessing Mobile Technology Usage for Knowledge Dissemination among Farmers in Punjab," Information Technology for Development, Taylor & Francis Journals, vol. 21(4), pages 668-676, October.
    13. Ying Li & Yung‐ho Chiu & Tai‐Yu Lin & Hongyi Cen & Yabin Liu, 2021. "Evaluation of natural disaster treatment efficiency in 27 Chinese provinces," Natural Resources Forum, Blackwell Publishing, vol. 45(3), pages 256-288, August.
    14. Ching-Nuo Chen & Chih-Heng Tsai & Chang-Tai Tsai, 2011. "Simulation of Runoff and Suspended Sediment Transport Rate in a Basin with Multiple Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 793-816, February.
    15. Mingze Li & Jun Lv & Xin Chen & Nan Jiang, 2015. "Provincial evaluation of vulnerability to geological disaster in China and its influencing factors: a three-stage DEA-based analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1649-1662, December.
    16. Li Liao & Jianzhong Zhou & Qiang Zou, 2013. "Weighted fuzzy kernel-clustering algorithm with adaptive differential evolution and its application on flood classification," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 279-293, October.
    17. Zhijun Li & Yigang Wei & Yan Li & Zhicheng Wang & Jinming Zhang, 2020. "China’s Provincial Eco-Efficiency and Its Driving Factors—Based on Network DEA and PLS-SEM Method," IJERPH, MDPI, vol. 17(22), pages 1-31, November.
    18. Ziyang Wang & Peiji Shi & Xuebin Zhang & Huali Tong & Weiping Zhang & Yue Liu, 2021. "Research on Landscape Pattern Construction and Ecological Restoration of Jiuquan City Based on Ecological Security Evaluation," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    19. Pilar Baquedano Julià & Tiago Miguel Ferreira, 2021. "From single- to multi-hazard vulnerability and risk in Historic Urban Areas: a literature review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 93-128, August.
    20. Xuebin Zhang & Ziyang Wang & Yue Liu & Jing Shi & Hucheng Du, 2023. "Ecological Security Assessment and Territory Spatial Restoration and Management of Inland River Basin—Based on the Perspective of Production–Living–Ecological Space," Land, MDPI, vol. 12(8), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:9:d:10.1007_s10668-022-02455-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.