IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v76y2020i1d10.1007_s10589-020-00174-2.html
   My bibliography  Save this article

Composite convex optimization with global and local inexact oracles

Author

Listed:
  • Tianxiao Sun

    (The University of North Carolina at Chapel Hill)

  • Ion Necoara

    (University Politehnica Bucharest)

  • Quoc Tran-Dinh

    (The University of North Carolina at Chapel Hill)

Abstract

We introduce new global and local inexact oracle concepts for a wide class of convex functions in composite convex minimization. Such inexact oracles naturally arise in many situations, including primal–dual frameworks, barrier smoothing, and inexact evaluations of gradients and Hessians. We also provide examples showing that the class of convex functions equipped with the newly inexact oracles is larger than standard self-concordant and Lipschitz gradient function classes. Further, we investigate several properties of convex and/or self-concordant functions under our inexact oracles which are useful for algorithmic development. Next, we apply our theory to develop inexact proximal Newton-type schemes for minimizing general composite convex optimization problems equipped with such inexact oracles. Our theoretical results consist of new optimization algorithms accompanied with global convergence guarantees to solve a wide class of composite convex optimization problems. When the first objective term is additionally self-concordant, we establish different local convergence results for our method. In particular, we prove that depending on the choice of accuracy levels of the inexact second-order oracles, we obtain different local convergence rates ranging from linear and superlinear to quadratic. In special cases, where convergence bounds are known, our theory recovers the best known rates. We also apply our settings to derive a new primal–dual method for composite convex minimization problems involving linear operators. Finally, we present some representative numerical examples to illustrate the benefit of the new algorithms.

Suggested Citation

  • Tianxiao Sun & Ion Necoara & Quoc Tran-Dinh, 2020. "Composite convex optimization with global and local inexact oracles," Computational Optimization and Applications, Springer, vol. 76(1), pages 69-124, May.
  • Handle: RePEc:spr:coopap:v:76:y:2020:i:1:d:10.1007_s10589-020-00174-2
    DOI: 10.1007/s10589-020-00174-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00174-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00174-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marron, J.S. & Todd, Michael J. & Ahn, Jeongyoun, 2007. "Distance-Weighted Discrimination," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1267-1271, December.
    2. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2011. "First-order methods of smooth convex optimization with inexact oracle," LIDAM Discussion Papers CORE 2011002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Jinchao Li & Martin S. Andersen & Lieven Vandenberghe, 2017. "Inexact proximal Newton methods for self-concordant functions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(1), pages 19-41, February.
    4. Ion Necoara & Andrei Patrascu & François Glineur, 2019. "Complexity of first-order inexact Lagrangian and penalty methods for conic convex programming," LIDAM Reprints CORE 3004, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Pavel Dvurechensky & Alexander Gasnikov, 2016. "Stochastic Intermediate Gradient Method for Convex Problems with Stochastic Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 121-145, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
    2. Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.
    3. Jueyou Li & Zhiyou Wu & Changzhi Wu & Qiang Long & Xiangyu Wang, 2016. "An Inexact Dual Fast Gradient-Projection Method for Separable Convex Optimization with Linear Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 153-171, January.
    4. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    5. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Yugo Nakayama & Kazuyoshi Yata & Makoto Aoshima, 2020. "Bias-corrected support vector machine with Gaussian kernel in high-dimension, low-sample-size settings," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1257-1286, October.
    7. Xuexue Zhang & Sanyang Liu & Nannan Zhao, 2023. "An Extended Gradient Method for Smooth and Strongly Convex Functions," Mathematics, MDPI, vol. 11(23), pages 1-14, November.
    8. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
    9. Julian Rasch & Antonin Chambolle, 2020. "Inexact first-order primal–dual algorithms," Computational Optimization and Applications, Springer, vol. 76(2), pages 381-430, June.
    10. Liam Madden & Stephen Becker & Emiliano Dall’Anese, 2021. "Bounds for the Tracking Error of First-Order Online Optimization Methods," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 437-457, May.
    11. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2013. "First-order methods with inexact oracle: the strongly convex case," LIDAM Discussion Papers CORE 2013016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Hayley Randall & Andreas Artemiou & Xingye Qiao, 2021. "Sufficient dimension reduction based on distance‐weighted discrimination," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1186-1211, December.
    13. Ching-pei Lee & Stephen J. Wright, 2019. "Inexact Successive quadratic approximation for regularized optimization," Computational Optimization and Applications, Springer, vol. 72(3), pages 641-674, April.
    14. Marron, J.S., 2017. "Big Data in context and robustness against heterogeneity," Econometrics and Statistics, Elsevier, vol. 2(C), pages 73-80.
    15. NESTEROV, Yurii, 2013. "Universal gradient methods for convex optimization problems," LIDAM Discussion Papers CORE 2013026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Le Thi Khanh Hien & Cuong V. Nguyen & Huan Xu & Canyi Lu & Jiashi Feng, 2019. "Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 541-566, May.
    17. DEVOLDER, Olivier, 2011. "Stochastic first order methods in smooth convex optimization," LIDAM Discussion Papers CORE 2011070, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Kimon Fountoulakis & Rachael Tappenden, 2018. "A flexible coordinate descent method," Computational Optimization and Applications, Springer, vol. 70(2), pages 351-394, June.
    19. Ishii, Aki & Yata, Kazuyoshi & Aoshima, Makoto, 2022. "Geometric classifiers for high-dimensional noisy data," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    20. Fedor Stonyakin & Ilya Kuruzov & Boris Polyak, 2023. "Stopping Rules for Gradient Methods for Non-convex Problems with Additive Noise in Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 531-551, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:76:y:2020:i:1:d:10.1007_s10589-020-00174-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.