IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v73y2019i2d10.1007_s10589-019-00081-1.html
   My bibliography  Save this article

Iteratively reweighted $$\ell _1$$ ℓ 1 algorithms with extrapolation

Author

Listed:
  • Peiran Yu

    (The Hong Kong Polytechnic University)

  • Ting Kei Pong

    (The Hong Kong Polytechnic University)

Abstract

Iteratively reweighted $$\ell _1$$ ℓ 1 algorithm is a popular algorithm for solving a large class of optimization problems whose objective is the sum of a Lipschitz differentiable loss function and a possibly nonconvex sparsity inducing regularizer. In this paper, motivated by the success of extrapolation techniques in accelerating first-order methods, we study how widely used extrapolation techniques such as those in Auslender and Teboulle (SIAM J Optim 16:697–725, 2006), Beck and Teboulle (SIAM J Imaging Sci 2:183–202, 2009), Lan et al. (Math Program 126:1–29, 2011) and Nesterov (Math Program 140:125–161, 2013) can be incorporated to possibly accelerate the iteratively reweighted $$\ell _1$$ ℓ 1 algorithm. We consider three versions of such algorithms. For each version, we exhibit an explicitly checkable condition on the extrapolation parameters so that the sequence generated provably clusters at a stationary point of the optimization problem. We also investigate global convergence under additional Kurdyka–Łojasiewicz assumptions on certain potential functions. Our numerical experiments show that our algorithms usually outperform the general iterative shrinkage and thresholding algorithm in Gong et al. (Proc Int Conf Mach Learn 28:37–45, 2013) and an adaptation of the iteratively reweighted $$\ell _1$$ ℓ 1 algorithm in Lu (Math Program 147:277–307, 2014, Algorithm 7) with nonmonotone line-search for solving random instances of log penalty regularized least squares problems in terms of both CPU time and solution quality.

Suggested Citation

  • Peiran Yu & Ting Kei Pong, 2019. "Iteratively reweighted $$\ell _1$$ ℓ 1 algorithms with extrapolation," Computational Optimization and Applications, Springer, vol. 73(2), pages 353-386, June.
  • Handle: RePEc:spr:coopap:v:73:y:2019:i:2:d:10.1007_s10589-019-00081-1
    DOI: 10.1007/s10589-019-00081-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00081-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00081-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    2. Xiaojun Chen & Weijun Zhou, 2014. "Convergence of the reweighted ℓ 1 minimization algorithm for ℓ 2 –ℓ p minimization," Computational Optimization and Applications, Springer, vol. 59(1), pages 47-61, October.
    3. NESTEROV, Yurii, 2013. "Gradient methods for minimizing composite functions," LIDAM Reprints CORE 2510, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    5. Bo Wen & Xiaojun Chen & Ting Kei Pong, 2018. "A proximal difference-of-convex algorithm with extrapolation," Computational Optimization and Applications, Springer, vol. 69(2), pages 297-324, March.
    6. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuqin Sun & Ting Kei Pong, 2023. "Doubly iteratively reweighted algorithm for constrained compressed sensing models," Computational Optimization and Applications, Springer, vol. 85(2), pages 583-619, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. VÁZQUEZ-ALCOCER, Alan & SCHOEN, Eric D. & GOOS, Peter, 2018. "A mixed integer optimization approach for model selection in screening experiments," Working Papers 2018007, University of Antwerp, Faculty of Business and Economics.
    2. Jian Huang & Yuling Jiao & Lican Kang & Jin Liu & Yanyan Liu & Xiliang Lu, 2022. "GSDAR: a fast Newton algorithm for $$\ell _0$$ ℓ 0 regularized generalized linear models with statistical guarantee," Computational Statistics, Springer, vol. 37(1), pages 507-533, March.
    3. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    4. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    5. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    6. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    7. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    8. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.
    9. Gareth M. James & Peter Radchenko & Jinchi Lv, 2009. "DASSO: connections between the Dantzig selector and lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 127-142, January.
    10. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    11. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    12. Alexander Chudik & George Kapetanios & M. Hashem Pesaran, 2016. "Big Data Analytics: A New Perspective," CESifo Working Paper Series 5824, CESifo.
    13. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    14. Xiao Ni & Daowen Zhang & Hao Helen Zhang, 2010. "Variable Selection for Semiparametric Mixed Models in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 79-88, March.
    15. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    16. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    18. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    19. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    20. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:73:y:2019:i:2:d:10.1007_s10589-019-00081-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.