IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v69y2018i2d10.1007_s10589-017-9948-z.html
   My bibliography  Save this article

Higher-order numerical scheme for linear quadratic problems with bang–bang controls

Author

Listed:
  • T. Scarinci

    (University of Vienna)

  • V. M. Veliov

    (Vienna University of Technology)

Abstract

This paper considers a linear-quadratic optimal control problem where the control function appears linearly and takes values in a hypercube. It is assumed that the optimal controls are of purely bang–bang type and that the switching function, associated with the problem, exhibits a suitable growth around its zeros. The authors introduce a scheme for the discretization of the problem that doubles the rate of convergence of the Euler’s scheme. The proof of the accuracy estimate employs some recently obtained results concerning the stability of the optimal solutions with respect to disturbances.

Suggested Citation

  • T. Scarinci & V. M. Veliov, 2018. "Higher-order numerical scheme for linear quadratic problems with bang–bang controls," Computational Optimization and Applications, Springer, vol. 69(2), pages 403-422, March.
  • Handle: RePEc:spr:coopap:v:69:y:2018:i:2:d:10.1007_s10589-017-9948-z
    DOI: 10.1007/s10589-017-9948-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9948-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9948-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ursula Felgenhauer, 2016. "Discretization of semilinear bang-singular-bang control problems," Computational Optimization and Applications, Springer, vol. 64(1), pages 295-326, May.
    2. Martin Seydenschwanz, 2015. "Convergence results for the discrete regularization of linear-quadratic control problems with bang–bang solutions," Computational Optimization and Applications, Springer, vol. 61(3), pages 731-760, July.
    3. Alt, Walter & Schneider, Christopher & Seydenschwanz, Martin, 2016. "Regularization and implicit Euler discretization of linear-quadratic optimal control problems with bang-bang solutions," Applied Mathematics and Computation, Elsevier, vol. 287, pages 104-124.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter Alt & Ursula Felgenhauer & Martin Seydenschwanz, 2018. "Euler discretization for a class of nonlinear optimal control problems with control appearing linearly," Computational Optimization and Applications, Springer, vol. 69(3), pages 825-856, April.
    2. J. Preininger & P. T. Vuong, 2018. "On the convergence of the gradient projection method for convex optimal control problems with bang–bang solutions," Computational Optimization and Applications, Springer, vol. 70(1), pages 221-238, May.
    3. Dang Hieu & Pham Ky Anh & Nguyen Hai Ha, 2021. "Regularization Proximal Method for Monotone Variational Inclusions," Networks and Spatial Economics, Springer, vol. 21(4), pages 905-932, December.
    4. Walter Alt & C. Yalçın Kaya & Christopher Schneider, 2016. "Dualization and discretization of linear-quadratic control problems with bang–bang solutions," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 47-77, February.
    5. Nikolaus Daniels, 2018. "Tikhonov regularization of control-constrained optimal control problems," Computational Optimization and Applications, Springer, vol. 70(1), pages 295-320, May.
    6. Alt, Walter & Schneider, Christopher & Seydenschwanz, Martin, 2016. "Regularization and implicit Euler discretization of linear-quadratic optimal control problems with bang-bang solutions," Applied Mathematics and Computation, Elsevier, vol. 287, pages 104-124.
    7. Dang Van Hieu & Jean Jacques Strodiot & Le Dung Muu, 2020. "An Explicit Extragradient Algorithm for Solving Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 476-503, May.
    8. Liang, Yuling & Zhang, Huaguang & Zhang, Juan & Luo, Yanhong, 2021. "Integral reinforcement learning-based guaranteed cost control for unknown nonlinear systems subject to input constraints and uncertainties," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    9. Dang Hieu & Pham Kim Quy, 2023. "One-Step iterative method for bilevel equilibrium problem in Hilbert space," Journal of Global Optimization, Springer, vol. 85(2), pages 487-510, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:69:y:2018:i:2:d:10.1007_s10589-017-9948-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.