IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v66y2017i1d10.1007_s10589-016-9860-y.html
   My bibliography  Save this article

On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function

Author

Listed:
  • Xingju Cai

    (Nanjing Normal University)

  • Deren Han

    (Nanjing Normal University)

  • Xiaoming Yuan

    (Hong Kong Baptist University)

Abstract

The alternating direction method of multipliers (ADMM) is a benchmark for solving a two-block linearly constrained convex minimization model whose objective function is the sum of two functions without coupled variables. Meanwhile, it is known that the convergence is not guaranteed if the ADMM is directly extended to a multiple-block convex minimization model whose objective function has more than two functions. Recently, some authors have actively studied the strong convexity condition on the objective function to sufficiently ensure the convergence of the direct extension of ADMM or the resulting convergence when the original scheme is appropriately twisted. We focus on the three-block case of such a model whose objective function is the sum of three functions, and discuss the convergence of the direct extension of ADMM. We show that when one function in the objective is strongly convex, the penalty parameter and the operators in the linear equality constraint are appropriately restricted, it is sufficient to guarantee the convergence of the direct extension of ADMM. We further estimate the worst-case convergence rate measured by the iteration complexity in both the ergodic and nonergodic senses, and derive the globally linear convergence in asymptotical sense under some additional conditions.

Suggested Citation

  • Xingju Cai & Deren Han & Xiaoming Yuan, 2017. "On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function," Computational Optimization and Applications, Springer, vol. 66(1), pages 39-73, January.
  • Handle: RePEc:spr:coopap:v:66:y:2017:i:1:d:10.1007_s10589-016-9860-y
    DOI: 10.1007/s10589-016-9860-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-016-9860-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-016-9860-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min Li & Defeng Sun & Kim-Chuan Toh, 2015. "A Convergent 3-Block Semi-Proximal ADMM for Convex Minimization Problems with One Strongly Convex Block," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(04), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhiyuan & Zhang, Honggang & Zhang, Kai & Zhou, Zihan, 2023. "Integrating alternating direction method of multipliers and bush for solving the traffic assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    2. Yangyang Xu, 2019. "Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs," Computational Optimization and Applications, Springer, vol. 72(1), pages 87-113, January.
    3. Zhi-Long Dong & Fengmin Xu & Yu-Hong Dai, 2020. "Fast algorithms for sparse portfolio selection considering industries and investment styles," Journal of Global Optimization, Springer, vol. 78(4), pages 763-789, December.
    4. William W. Hager & Hongchao Zhang, 2019. "Inexact alternating direction methods of multipliers for separable convex optimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 201-235, May.
    5. Tonbari, Mohamed El & Ahmed, Shabbir, 2023. "Consensus-based Dantzig-Wolfe decomposition," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1441-1456.
    6. Bin Gao & Feng Ma, 2018. "Symmetric Alternating Direction Method with Indefinite Proximal Regularization for Linearly Constrained Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 178-204, January.
    7. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    8. Zehui Jia & Xue Gao & Xingju Cai & Deren Han, 2021. "Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 1-25, January.
    9. Jianchao Bai & William W. Hager & Hongchao Zhang, 2022. "An inexact accelerated stochastic ADMM for separable convex optimization," Computational Optimization and Applications, Springer, vol. 81(2), pages 479-518, March.
    10. Yaning Jiang & Deren Han & Xingju Cai, 2022. "An efficient partial parallel method with scaling step size strategy for three-block convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 383-419, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    2. Peixuan Li & Yuan Shen & Suhong Jiang & Zehua Liu & Caihua Chen, 2021. "Convergence study on strictly contractive Peaceman–Rachford splitting method for nonseparable convex minimization models with quadratic coupling terms," Computational Optimization and Applications, Springer, vol. 78(1), pages 87-124, January.
    3. Yangyang Xu & Shuzhong Zhang, 2018. "Accelerated primal–dual proximal block coordinate updating methods for constrained convex optimization," Computational Optimization and Applications, Springer, vol. 70(1), pages 91-128, May.
    4. Yangyang Xu, 2019. "Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs," Computational Optimization and Applications, Springer, vol. 72(1), pages 87-113, January.
    5. Zhangquan Wang & Shanshan Huo & Xinlong Xiong & Ke Wang & Banteng Liu, 2023. "A Maximally Split and Adaptive Relaxed Alternating Direction Method of Multipliers for Regularized Extreme Learning Machines," Mathematics, MDPI, vol. 11(14), pages 1-16, July.
    6. Kaizhao Sun & X. Andy Sun, 2023. "A two-level distributed algorithm for nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 84(2), pages 609-649, March.
    7. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    8. William W. Hager & Hongchao Zhang, 2019. "Inexact alternating direction methods of multipliers for separable convex optimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 201-235, May.
    9. Ruoyu Sun & Zhi-Quan Luo & Yinyu Ye, 2020. "On the Efficiency of Random Permutation for ADMM and Coordinate Descent," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 233-271, February.
    10. Yaning Jiang & Deren Han & Xingju Cai, 2022. "An efficient partial parallel method with scaling step size strategy for three-block convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 383-419, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:66:y:2017:i:1:d:10.1007_s10589-016-9860-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.