Advanced Search
MyIDEAS: Login

On the convergence of trust region algorithms for unconstrained minimization without derivatives

Contents:

Author Info

  • M. Powell

    ()

Registered author(s):

    Abstract

    We consider iterative trust region algorithms for the unconstrained minimization of an objective function $F ( \underline{x})$ , $\underline{x}\in \mathcal{R}^{n}$ , when F is differentiable but no derivatives are available, and when each model of F is a linear or a quadratic polynomial. The models interpolate F at n+1 points, which defines them uniquely when they are linear polynomials. In the quadratic case, second derivatives of the models are derived from information from previous iterations, but there are so few data that typically only the magnitudes of second derivative estimates are correct. Nevertheless, numerical results show that much faster convergence is achieved when quadratic models are employed instead of linear ones. Just one new value of F is calculated on each iteration. Changes to the variables are either trust region steps or are designed to maintain suitable volumes and diameters of the convex hulls of the interpolation points. It is proved that, if F is bounded below, if ∇ 2 F is also bounded, and if the number of iterations is infinite, then the sequence of gradients $\underline{\nabla}F ( \underline{x}_{\,k} )$ , k=1,2,3,…, converges to zero, where $\underline{x}_{\,k}$ is the centre of the trust region of the k-th iteration. Copyright Springer Science+Business Media, LLC 2012

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://hdl.handle.net/10.1007/s10589-012-9483-x
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Springer in its journal Computational Optimization and Applications.

    Volume (Year): 53 (2012)
    Issue (Month): 2 (October)
    Pages: 527-555

    as in new window
    Handle: RePEc:spr:coopap:v:53:y:2012:i:2:p:527-555

    Contact details of provider:
    Web page: http://www.springer.com/math/journal/10589

    Order Information:
    Web: http://link.springer.de/orders.htm

    Related research

    Keywords: Convergence theory; Derivative free optimization; Symmetric Broyden; Trust region methods; Unconstrained minimization;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:2:p:527-555. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.