IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v47y2010i2p179-206.html
   My bibliography  Save this article

A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training

Author

Listed:
  • Paul Tseng
  • Sangwoon Yun

Abstract

No abstract is available for this item.

Suggested Citation

  • Paul Tseng & Sangwoon Yun, 2010. "A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training," Computational Optimization and Applications, Springer, vol. 47(2), pages 179-206, October.
  • Handle: RePEc:spr:coopap:v:47:y:2010:i:2:p:179-206
    DOI: 10.1007/s10589-008-9215-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-008-9215-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-008-9215-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. J. Lin & S. Lucidi & L. Palagi & A. Risi & M. Sciandrone, 2009. "Decomposition Algorithm Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 107-126, April.
    2. K. C. Kiwiel, 2007. "On Linear-Time Algorithms for the Continuous Quadratic Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 549-554, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xiaolin & Shi, Lei & Pelckmans, Kristiaan & Suykens, Johan A.K., 2014. "Asymmetric ν-tube support vector regression," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 371-382.
    2. Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
    3. Tianxiang Liu & Ting Kei Pong, 2017. "Further properties of the forward–backward envelope with applications to difference-of-convex programming," Computational Optimization and Applications, Springer, vol. 67(3), pages 489-520, July.
    4. Amir Beck, 2014. "The 2-Coordinate Descent Method for Solving Double-Sided Simplex Constrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 892-919, September.
    5. Andrea Cristofari, 2019. "An almost cyclic 2-coordinate descent method for singly linearly constrained problems," Computational Optimization and Applications, Springer, vol. 73(2), pages 411-452, June.
    6. Weizhe Gu & Wei-Po Chen & Chun-Hsu Ko & Yuh-Jye Lee & Jein-Shan Chen, 2018. "Two smooth support vector machines for $$\varepsilon $$ ε -insensitive regression," Computational Optimization and Applications, Springer, vol. 70(1), pages 171-199, May.
    7. Leonardo Galli & Alessandro Galligari & Marco Sciandrone, 2020. "A unified convergence framework for nonmonotone inexact decomposition methods," Computational Optimization and Applications, Springer, vol. 75(1), pages 113-144, January.
    8. Andrea Manno & Laura Palagi & Simone Sagratella, 2014. "A Class of Convergent Parallel Algorithms for SVMs Training," DIAG Technical Reports 2014-17, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    9. Wei Peng & Hui Zhang & Xiaoya Zhang, 2019. "Nonconvex Proximal Incremental Aggregated Gradient Method with Linear Convergence," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 230-245, October.
    10. Andrea Manno & Laura Palagi & Simone Sagratella, 2018. "Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training," Computational Optimization and Applications, Springer, vol. 71(1), pages 115-145, September.
    11. Fan Wu & Wei Bian, 2020. "Accelerated iterative hard thresholding algorithm for $$l_0$$l0 regularized regression problem," Journal of Global Optimization, Springer, vol. 76(4), pages 819-840, April.
    12. Kimon Fountoulakis & Rachael Tappenden, 2018. "A flexible coordinate descent method," Computational Optimization and Applications, Springer, vol. 70(2), pages 351-394, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
    2. Cassioli, A. & Di Lorenzo, D. & Sciandrone, M., 2013. "On the convergence of inexact block coordinate descent methods for constrained optimization," European Journal of Operational Research, Elsevier, vol. 231(2), pages 274-281.
    3. Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
    4. Andrea Manno & Laura Palagi & Simone Sagratella, 2018. "Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training," Computational Optimization and Applications, Springer, vol. 71(1), pages 115-145, September.
    5. Veronica Piccialli & Marco Sciandrone, 2022. "Nonlinear optimization and support vector machines," Annals of Operations Research, Springer, vol. 314(1), pages 15-47, July.
    6. Leonardo Galli & Alessandro Galligari & Marco Sciandrone, 2020. "A unified convergence framework for nonmonotone inexact decomposition methods," Computational Optimization and Applications, Springer, vol. 75(1), pages 113-144, January.
    7. Veronica Piccialli & Marco Sciandrone, 2018. "Nonlinear optimization and support vector machines," 4OR, Springer, vol. 16(2), pages 111-149, June.
    8. Giampaolo Liuzzi & Laura Palagi & Mauro Piacentini, 2010. "On the convergence of a Jacobi-type algorithm for Singly Linearly-Constrained Problems Subject to simple Bounds," DIS Technical Reports 2010-01, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    9. Dellepiane, Umberto & Palagi, Laura, 2015. "Using SVM to combine global heuristics for the Standard Quadratic Problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 596-605.
    10. G. Liuzzi & S. Lucidi & F. Rinaldi, 2012. "Derivative-free methods for bound constrained mixed-integer optimization," Computational Optimization and Applications, Springer, vol. 53(2), pages 505-526, October.
    11. Giampaolo Liuzzi & Stefano Lucidi & Francesco Rinaldi, 2015. "Derivative-Free Methods for Mixed-Integer Constrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 933-965, March.
    12. Hoto, R.S.V. & Matioli, L.C. & Santos, P.S.M., 2020. "A penalty algorithm for solving convex separable knapsack problems," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    13. Andrei Patrascu & Ion Necoara, 2015. "Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization," Journal of Global Optimization, Springer, vol. 61(1), pages 19-46, January.
    14. G. Cocchi & G. Liuzzi & A. Papini & M. Sciandrone, 2018. "An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints," Computational Optimization and Applications, Springer, vol. 69(2), pages 267-296, March.
    15. K. C. Kiwiel, 2008. "Variable Fixing Algorithms for the Continuous Quadratic Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 445-458, March.
    16. Amir Beck & Nadav Hallak, 2016. "On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions, and Algorithms," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 196-223, February.
    17. Hsin-Min Sun & Ruey-Lin Sheu, 2019. "Minimum variance allocation among constrained intervals," Journal of Global Optimization, Springer, vol. 74(1), pages 21-44, May.
    18. Amir Beck, 2014. "The 2-Coordinate Descent Method for Solving Double-Sided Simplex Constrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 892-919, September.
    19. Andrea Cristofari, 2019. "An almost cyclic 2-coordinate descent method for singly linearly constrained problems," Computational Optimization and Applications, Springer, vol. 73(2), pages 411-452, June.
    20. Meijiao Liu & Yong-Jin Liu, 2017. "Fast algorithm for singly linearly constrained quadratic programs with box-like constraints," Computational Optimization and Applications, Springer, vol. 66(2), pages 309-326, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:47:y:2010:i:2:p:179-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.