IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i3d10.1007_s00180-023-01377-x.html
   My bibliography  Save this article

Multi-step estimators and shrinkage effect in time series models

Author

Listed:
  • Ivan Svetunkov

    (Lancaster University Management School
    Lancaster University Management School)

  • Nikolaos Kourentzes

    (University of Skövde)

  • Rebecca Killick

    (Lancaster University)

Abstract

Many modern statistical models are used for both insight and prediction when applied to data. When models are used for prediction one should optimise parameters through a prediction error loss function. Estimation methods based on multiple steps ahead forecast errors have been shown to lead to more robust and less biased estimates of parameters. However, a plausible explanation of why this is the case is lacking. In this paper, we provide this explanation, showing that the main benefit of these estimators is in a shrinkage effect, happening in univariate models naturally. However, this can introduce a series of limitations, due to overly aggressive shrinkage. We discuss the predictive likelihoods related to the multistep estimators and demonstrate what their usage implies to time series models. To overcome the limitations of the existing multiple steps estimators, we propose the Geometric Trace Mean Squared Error, demonstrating its advantages. We conduct a simulation experiment showing how the estimators behave with different sample sizes and forecast horizons. Finally, we carry out an empirical evaluation on real data, demonstrating the performance and advantages of the estimators. Given that the underlying process to be modelled is often unknown, we conclude that the shrinkage achieved by the GTMSE is a competitive alternative to conventional ones.

Suggested Citation

  • Ivan Svetunkov & Nikolaos Kourentzes & Rebecca Killick, 2024. "Multi-step estimators and shrinkage effect in time series models," Computational Statistics, Springer, vol. 39(3), pages 1203-1239, May.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01377-x
    DOI: 10.1007/s00180-023-01377-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01377-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01377-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01377-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.