IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i2d10.1007_s00180-022-01292-7.html
   My bibliography  Save this article

Feature selection algorithms in generalized additive models under concurvity

Author

Listed:
  • László Kovács

    (Corvinus University of Budapest)

Abstract

In this paper, the properties of 10 different feature selection algorithms for generalized additive models (GAMs) are compared on one simulated and two real-world datasets under concurvity. Concurvity can be interpreted as a redundancy in the feature set of a GAM. Like multicollinearity in linear models, concurvity causes unstable parameter estimates in GAMs and makes the marginal effect of features harder interpret. Feature selection algorithms for GAMs can be separated into four clusters: stepwise, boosting, regularization and concurvity controlled methods. Our numerical results show that algorithms with no constraints on concurvity tend to select a large feature set, without significant improvements in predictive performance compared to a more parsimonious feature set. A large feature set is accompanied by harmful concurvity in the proposed models. To tackle the concurvity phenomenon, recent feature selection algorithms such as the mRMR and the HSIC-Lasso incorporated some constraints on concurvity in their objective function. However, these algorithms interpret concurvity as pairwise non-linear relationship between features, so they do not account for the case when a feature can be accurately estimated as a multivariate function of several other features. This is confirmed by our numerical results. Our own solution to the problem, a hybrid genetic–harmony search algorithm (HA) introduces constrains on multivariate concurvity directly. Due to this constraint, the HA proposes a small and not redundant feature set with predictive performance similar to that of models with far more features.

Suggested Citation

  • László Kovács, 2024. "Feature selection algorithms in generalized additive models under concurvity," Computational Statistics, Springer, vol. 39(2), pages 461-493, April.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-022-01292-7
    DOI: 10.1007/s00180-022-01292-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01292-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01292-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-022-01292-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.