IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v38y2023i4d10.1007_s00180-022-01304-6.html
   My bibliography  Save this article

Deep support vector quantile regression with non-crossing constraints

Author

Listed:
  • Wooyoung Shin

    (Korea University)

  • Yoonsuh Jung

    (Korea University)

Abstract

We propose a new nonparametric regression approach that combines deep neural networks with support vector quantile regression models. The nature of deep neural networks enables complex nonlinear regression quantiles to be estimated more accurately. Because deep learning models have a complicated structure, the proposed method can easily fit both smooth and non-smooth data sets. For this reason, we can effectively model data sets with truncated points or locally different smoothness in which spline-based smoothing methods often fail. Stepwise fitting is used to increase computing speed when fitting multiple quantiles. This produces stable fits, especially when observations are scarce near the target quantile. In addition, we employ certain constraints to prevent the fitted quantiles from crossing. The benefits of the proposed method are more apparent when the errors are heteroscedastic, although quantile regression does not require homogeneous errors. We illustrate the flexibility of the proposed method using simulated data sets and six real data examples with univariate and multivariate input variables.

Suggested Citation

  • Wooyoung Shin & Yoonsuh Jung, 2023. "Deep support vector quantile regression with non-crossing constraints," Computational Statistics, Springer, vol. 38(4), pages 1947-1976, December.
  • Handle: RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-022-01304-6
    DOI: 10.1007/s00180-022-01304-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01304-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01304-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-022-01304-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.