IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i4d10.1007_s00180-021-01180-6.html
   My bibliography  Save this article

Reliability inference for multicomponent stress–strength model from Kumaraswamy-G family of distributions based on progressively first failure censored samples

Author

Listed:
  • Shubham Saini

    (University of Delhi)

  • Renu Garg

    (University of Delhi)

Abstract

In this article, the problem of reliability inference of multicomponent stress–strength (MSS) from Kumaraswamy-G (Kw-G) family of distributions under progressive first failure censoring is considered. The reliability of MSS is considered when both the stress and strength variables follow Kw-G distributions with different first shape parameters and common second shape parameter. The maximum likelihood (ML) and Bayes estimators of reliability are derived when all the parameters are unknown. Also, the ML, uniformly minimum variance unbiased and Bayes estimators of reliability are derived in case of common shape parameter is known. The Bayesian credible and HPD credible intervals of reliability are developed using Gibbs sampling method. The performance of various estimates developed are discussed by a Monte Carlo simulation study. At last, two real life examples are considered for illustrative purposes.

Suggested Citation

  • Shubham Saini & Renu Garg, 2022. "Reliability inference for multicomponent stress–strength model from Kumaraswamy-G family of distributions based on progressively first failure censored samples," Computational Statistics, Springer, vol. 37(4), pages 1795-1837, September.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01180-6
    DOI: 10.1007/s00180-021-01180-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01180-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01180-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soliman, Ahmed A. & Abd-Ellah, Ahmed H. & Abou-Elheggag, Naser A. & Abd-Elmougod, Gamal A., 2012. "Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2471-2485.
    2. Amulya Kumar Mahto & Yogesh Mani Tripathi, 2020. "Estimation of reliability in a multicomponent stress-strength model for inverted exponentiated Rayleigh distribution under progressive censoring," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1043-1069, December.
    3. Wu, Shuo-Jye & Kus, Coskun, 2009. "On estimation based on progressive first-failure-censored sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3659-3670, August.
    4. Tanmay Kayal & Yogesh Mani Tripathi & Sanku Dey & Shuo-Jye Wu, 2020. "On estimating the reliability in a multicomponent stress-strength model based on Chen distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(10), pages 2429-2447, May.
    5. Lauren Sauer & Yuhlong Lio & Tzong-Ru Tsai, 2020. "Reliability Inference for the Multicomponent System Based on Progressively Type II Censored Samples from Generalized Pareto Distributions," Mathematics, MDPI, vol. 8(7), pages 1-14, July.
    6. Sang Gil Kang & Woo Dong Lee & Yongku Kim, 2021. "Objective Bayesian analysis for generalized exponential stress–strength model," Computational Statistics, Springer, vol. 36(3), pages 2079-2109, September.
    7. Akram Kohansal & Shirin Shoaee, 2021. "Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data," Statistical Papers, Springer, vol. 62(1), pages 309-359, February.
    8. G. Srinivasa Rao & Muhammad Aslam & Debasis Kundu, 2015. "Burr-XII Distribution Parametric Estimation and Estimation of Reliability of Multicomponent Stress-Strength," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(23), pages 4953-4961, December.
    9. Sanku Dey & Josmar Mazucheli & M. Z. Anis, 2017. "Estimation of reliability of multicomponent stress–strength for a Kumaraswamy distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(4), pages 1560-1572, February.
    10. Akram Kohansal, 2019. "On estimation of reliability in a multicomponent stress-strength model for a Kumaraswamy distribution based on progressively censored sample," Statistical Papers, Springer, vol. 60(6), pages 2185-2224, December.
    11. Y. L. Lio & Tzong-Ru Tsai, 2012. "Estimation of δ= P ( X > Y ) for Burr XII distribution based on the progressively first failure-censored samples," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 309-322, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuhlong Lio & Tzong-Ru Tsai & Liang Wang & Ignacio Pascual Cecilio Tejada, 2022. "Inferences of the Multicomponent Stress–Strength Reliability for Burr XII Distributions," Mathematics, MDPI, vol. 10(14), pages 1-28, July.
    2. Liang Wang & Huizhong Lin & Kambiz Ahmadi & Yuhlong Lio, 2021. "Estimation of Stress-Strength Reliability for Multicomponent System with Rayleigh Data," Energies, MDPI, vol. 14(23), pages 1-23, November.
    3. Essam A. Ahmed, 2017. "Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(9), pages 1576-1608, July.
    4. M. S. Kotb & M. Z. Raqab, 2021. "Estimation of reliability for multi-component stress–strength model based on modified Weibull distribution," Statistical Papers, Springer, vol. 62(6), pages 2763-2797, December.
    5. Jessie Marie Byrnes & Yu-Jau Lin & Tzong-Ru Tsai & Yuhlong Lio, 2019. "Bayesian Inference of δ = P ( X < Y ) for Burr Type XII Distribution Based on Progressively First Failure-Censored Samples," Mathematics, MDPI, vol. 7(9), pages 1-24, September.
    6. Akram Kohansal, 2019. "On estimation of reliability in a multicomponent stress-strength model for a Kumaraswamy distribution based on progressively censored sample," Statistical Papers, Springer, vol. 60(6), pages 2185-2224, December.
    7. Prashant Kumar Sonker & Mukesh Kumar & Agni Saroj, 2023. "Stress–strength reliability models on power-Muth distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 173-195, March.
    8. Devendra Pratap Singh & Mayank Kumar Jha & Yogesh Mani Tripathi & Liang Wang, 2023. "Inference on a Multicomponent Stress-Strength Model Based on Unit-Burr III Distributions," Annals of Data Science, Springer, vol. 10(5), pages 1329-1359, October.
    9. Shuo Gao & Wenhao Gui, 2019. "Parameter estimation of the inverted exponentiated Rayleigh distribution based on progressively first-failure censored samples," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 925-936, October.
    10. Lauren Sauer & Yuhlong Lio & Tzong-Ru Tsai, 2020. "Reliability Inference for the Multicomponent System Based on Progressively Type II Censored Samples from Generalized Pareto Distributions," Mathematics, MDPI, vol. 8(7), pages 1-14, July.
    11. Ajit Chaturvedi & Renu Garg & Shubham Saini, 2022. "Estimation and testing procedures for the reliability characteristics of Kumaraswamy-G distributions based on the progressively first failure censored samples," OPSEARCH, Springer;Operational Research Society of India, vol. 59(2), pages 494-517, June.
    12. Heba S. Mohammed & Saieed F. Ateya & Essam K. AL-Hussaini, 2017. "Estimation based on progressive first-failure censoring from exponentiated exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1479-1494, June.
    13. Ahmed Soliman & N. Abou-elheggag & A. Abd ellah & A. Modhesh, 2012. "Bayesian and non-Bayesian inferences of the Burr-XII distribution for progressive first-failure censored data," METRON, Springer;Sapienza Università di Roma, vol. 70(1), pages 1-25, April.
    14. Amal S. Hassan & Ibrahim M. Almanjahie & Amer Ibrahim Al-Omari & Loai Alzoubi & Heba Fathy Nagy, 2023. "Stress–Strength Modeling Using Median-Ranked Set Sampling: Estimation, Simulation, and Application," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    15. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    16. Y. L. Lio & Tzong-Ru Tsai, 2012. "Estimation of δ= P ( X > Y ) for Burr XII distribution based on the progressively first failure-censored samples," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 309-322, April.
    17. Filippo Domma & Sabrina Giordano, 2013. "A copula-based approach to account for dependence in stress-strength models," Statistical Papers, Springer, vol. 54(3), pages 807-826, August.
    18. Wang, Liang & Shi, Yimin, 2012. "Reliability analysis based on progressively first-failure-censored samples for the proportional hazard rate model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(8), pages 1383-1395.
    19. M. Hermanns & E. Cramer, 2018. "Inference with progressively censored k-out-of-n system lifetime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 787-810, December.
    20. Muqrin A. Almuqrin & Mukhtar M. Salah & Essam A. Ahmed, 2022. "Statistical Inference for Competing Risks Model with Adaptive Progressively Type-II Censored Gompertz Life Data Using Industrial and Medical Applications," Mathematics, MDPI, vol. 10(22), pages 1-38, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01180-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.