IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v32y2017i1d10.1007_s00180-016-0704-0.html
   My bibliography  Save this article

Parameter estimation of inverse Lindley distribution for Type-I censored data

Author

Listed:
  • Suparna Basu

    (University of Burdwan
    Banaras Hindu University)

  • Sanjay Kumar Singh

    (Banaras Hindu University
    Banaras Hindu University)

  • Umesh Singh

    (Banaras Hindu University
    Banaras Hindu University)

Abstract

In life testing experiments, Type-I censoring scheme has been widely used due to its simplicity and poise with considerable gain in the completion time of an experiment. This article deals with the parameter estimation of inverse Lindley distribution when the data is Type-I censored. Estimates have been obtained under both the classical and Bayesian paradigm. In the classical scenario, estimates based on maximum likelihood and maximum product of spacings coupled with their 95% asymptotic confidence interval have been obtained. Under the Bayesian set up, the point estimate is obtained by considering squared error loss function using Markov Chain Monte Carlo technique and highest posterior density intervals based on these samples are reckoned. The performance of above mentioned techniques are evaluated on the basis of their simulated risks. Further, a real data set is analysed for appraisal of aforementioned estimation techniques under the specified censoring scheme.

Suggested Citation

  • Suparna Basu & Sanjay Kumar Singh & Umesh Singh, 2017. "Parameter estimation of inverse Lindley distribution for Type-I censored data," Computational Statistics, Springer, vol. 32(1), pages 367-385, March.
  • Handle: RePEc:spr:compst:v:32:y:2017:i:1:d:10.1007_s00180-016-0704-0
    DOI: 10.1007/s00180-016-0704-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-016-0704-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-016-0704-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anatolyev, Stanislav & Kosenok, Grigory, 2005. "An Alternative To Maximum Likelihood Based On Spacings," Econometric Theory, Cambridge University Press, vol. 21(2), pages 472-476, April.
    2. Kundu, Debasis & Howlader, Hatem, 2010. "Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1547-1558, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    2. Mazen Nassar & Farouq Mohammad A. Alam, 2022. "Analysis of Modified Kies Exponential Distribution with Constant Stress Partially Accelerated Life Tests under Type-II Censoring," Mathematics, MDPI, vol. 10(5), pages 1-26, March.
    3. Teena Goyal & Piyush K. Rai & Sandeep K. Maurya, 2020. "Bayesian Estimation for GDUS Exponential Distribution Under Type-I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 7(2), pages 307-345, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    2. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    3. Azeem Ali & Sanku Dey & Haseeb Ur Rehman & Zeeshan Ali, 2019. "On Bayesian reliability estimation of a 1-out-of-k load sharing system model of modified Burr-III distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1052-1081, October.
    4. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    5. Hassan M. Okasha & Abdulkareem M. Basheer & Yuhlong Lio, 2022. "The E-Bayesian Methods for the Inverse Weibull Distribution Rate Parameter Based on Two Types of Error Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-27, December.
    6. Hamdy M. Salem, 2019. "The Marshall–Olkin Generalized Inverse Weibull Distribution: Properties and Application," Modern Applied Science, Canadian Center of Science and Education, vol. 13(2), pages 1-54, February.
    7. Ehab M. Almetwally & Hanan A. Haj Ahmad, 2020. "A new generalization of the Pareto distribution and its applications," Statistics in Transition New Series, Polish Statistical Association, vol. 21(5), pages 61-84, December.
    8. Hanieh Panahi & Abdolreza Sayyareh, 2014. "Parameter estimation and prediction of order statistics for the Burr Type XII distribution with Type II censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 215-232, January.
    9. Teena Goyal & Piyush K. Rai & Sandeep K. Maurya, 2020. "Bayesian Estimation for GDUS Exponential Distribution Under Type-I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 7(2), pages 307-345, June.
    10. Liang Wang & Sanku Dey & Yogesh Mani Tripathi, 2022. "Classical and Bayesian Inference of the Inverse Nakagami Distribution Based on Progressive Type-II Censored Samples," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    11. Cesar Augusto Taconeli & Idemauro Antonio Rodrigues Lara, 2022. "Improved confidence intervals based on ranked set sampling designs within a parametric bootstrap approach," Computational Statistics, Springer, vol. 37(5), pages 2267-2293, November.
    12. Grigoriy Volovskiy & Udo Kamps, 2020. "Maximum product of spacings prediction of future record values," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 853-868, October.
    13. Hanem Mohamed & Salwa A. Mousa & Amina E. Abo-Hussien & Magda M. Ismail, 2022. "Estimation of the Daily Recovery Cases in Egypt for COVID-19 Using Power Odd Generalized Exponential Lomax Distribution," Annals of Data Science, Springer, vol. 9(1), pages 71-99, February.
    14. Kehui Yao & Jun Zhu & Daniel J. O'Brien & Daniel Walsh, 2023. "Bayesian spatio‐temporal survival analysis for all types of censoring with application to a wildlife disease study," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.
    15. Abdulkareem M. Basheer & H. M. Okasha & A. H. El-Baz & A. M. K. Tarabia, 2023. "E-Bayesian and Hierarchical Bayesian Estimations for the Inverse Weibull Distribution," Annals of Data Science, Springer, vol. 10(3), pages 737-759, June.
    16. Musleh, Rola M. & Helu, Amal, 2014. "Estimation of the inverse Weibull distribution based on progressively censored data: Comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 216-227.
    17. Sarah R. Al-Dawsari & Khalaf S. Sultan, 2021. "Inverted Weibull Regression Models and Their Applications," Stats, MDPI, vol. 4(2), pages 1-22, April.
    18. Manoj Kumar Rastogi & Yogesh Mani Tripathi, 2014. "Estimation for an inverted exponentiated Rayleigh distribution under type II progressive censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2375-2405, November.
    19. Sanku Dey & Tanujit Dey, 2014. "On progressively censored generalized inverted exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2557-2576, December.
    20. Raj Kamal Maurya & Yogesh Mani Tripathi & Tanmay Kayal, 2022. "Reliability Estimation in a Multicomponent Stress-Strength Model Based on Inverse Weibull Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 364-401, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:32:y:2017:i:1:d:10.1007_s00180-016-0704-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.