IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v163y2020i1d10.1007_s10584-020-02815-1.html
   My bibliography  Save this article

Between a bog and a hard place: a global review of climate change effects on coastal freshwater wetlands

Author

Listed:
  • Rebekah Grieger

    (Griffith University (School of Environment and Science)
    Griffith University (Australian Rivers Institute))

  • Samantha J. Capon

    (Griffith University (School of Environment and Science)
    Griffith University (Australian Rivers Institute))

  • Wade L. Hadwen

    (Griffith University (School of Environment and Science)
    Griffith University (Australian Rivers Institute)
    Griffith University (Griffith Climate Change Response Program))

  • Brendan Mackey

    (Griffith University (School of Environment and Science)
    Griffith University (Griffith Climate Change Response Program))

Abstract

Coastal wetlands are significant components of the coastal landscape with important roles in ecosystem service provision and mitigation of climate change. They are also likely to be the system most impacted by climate change, feeling the effects of sea levels rise, temperature increases and rainfall regime changes. Climate change impacts on estuarine coastal wetlands (mangroves, saltmarsh) have been thoroughly investigated; however, the impacts on coastal freshwater wetlands (CFWs) are relatively unknown. To explore the current knowledge of the impacts of climate change on CFWs globally, we undertook a systematic quantitative literature review of peer-reviewed published literature. We found surprisingly little research (110 papers of an initial 678), the majority of which was conducted in the USA, focusing on the effects of sea level rise (SLR) on CFW vegetation or sediment accretion processes. From this research, we know that SLR will lead to reduced productivity, reduced regeneration, and increased mortality in CFW vegetation but little is known regarding the effects of other climate change drivers. Sediment accretion is also not sufficient to keep pace with SLR in many CFWs and again the effects of other climate drivers have not been investigated. The combination of unhealthy vegetation communities and minimal gain in vertical elevation can result in a transition towards a vegetation community of salt-tolerant species but more research is required to understand this process.

Suggested Citation

  • Rebekah Grieger & Samantha J. Capon & Wade L. Hadwen & Brendan Mackey, 2020. "Between a bog and a hard place: a global review of climate change effects on coastal freshwater wetlands," Climatic Change, Springer, vol. 163(1), pages 161-179, November.
  • Handle: RePEc:spr:climat:v:163:y:2020:i:1:d:10.1007_s10584-020-02815-1
    DOI: 10.1007/s10584-020-02815-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02815-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02815-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlos M. Duarte & Iñigo J. Losada & Iris E. Hendriks & Inés Mazarrasa & Núria Marbà, 2013. "The role of coastal plant communities for climate change mitigation and adaptation," Nature Climate Change, Nature, vol. 3(11), pages 961-968, November.
    2. Leah H Beckett & Andrew H Baldwin & Michael S Kearney, 2016. "Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-12, July.
    3. Matthew L. Kirwan & Keryn B. Gedan, 2019. "Sea-level driven land conversion and the formation of ghost forests," Nature Climate Change, Nature, vol. 9(6), pages 450-457, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachael Sacatelli & Marjorie Kaplan & Glen Carleton & Richard G. Lathrop, 2023. "Coastal Forest Dieback in the Northeast USA: Potential Mechanisms and Management Responses," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    2. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    3. Alexandru-Ionuţ Petrişor & Walid Hamma & Huu Duy Nguyen & Giovanni Randazzo & Anselme Muzirafuti & Mari-Isabella Stan & Van Truong Tran & Roxana Aştefănoaiei & Quang-Thanh Bui & Dragoş-Florian Vintilă, 2020. "Degradation of Coastlines under the Pressure of Urbanization and Tourism: Evidence on the Change of Land Systems from Europe, Asia and Africa," Land, MDPI, vol. 9(8), pages 1-43, August.
    4. Martin Søndergaard Jørgensen & Rodrigo Labouriau & Birgit Olesen, 2019. "Seed size and burial depth influence Zostera marina L. (eelgrass) seed survival, seedling emergence and initial seedling biomass development," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-16, April.
    5. Ruiz-Frau, A. & Krause, T. & Marbà , N., 2018. "The use of sociocultural valuation in sustainable environmental management," Ecosystem Services, Elsevier, vol. 29(PA), pages 158-167.
    6. Bregje K. van Wesenbeeck & Wiebe de Boer & Siddharth Narayan & Wouter R. L. van der Star & Mindert B. de Vries, 2017. "Coastal and riverine ecosystems as adaptive flood defenses under a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 1087-1094, October.
    7. Hagger, Valerie & Waltham, Nathan J. & Lovelock, Catherine E., 2022. "Opportunities for coastal wetland restoration for blue carbon with co-benefits for biodiversity, coastal fisheries, and water quality," Ecosystem Services, Elsevier, vol. 55(C).
    8. Amr E. Keshta & J. C. Alexis Riter & Kamal H. Shaltout & Andrew H. Baldwin & Michael Kearney & Ahmed Sharaf El-Din & Ebrahem M. Eid, 2022. "Loss of Coastal Wetlands in Lake Burullus, Egypt: A GIS and Remote-Sensing Study," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    9. Paulina Martinetto & Juan Alberti & María Eugenia Becherucci & Just Cebrian & Oscar Iribarne & Núria Marbà & Diana Montemayor & Eric Sparks & Raymond Ward, 2023. "The blue carbon of southern southwest Atlantic salt marshes and their biotic and abiotic drivers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Cuicui Feng & Guanqiong Ye & Jiangning Zeng & Jian Zeng & Qutu Jiang & Liuyue He & Yaowen Zhang & Zhenci Xu, 2023. "Sustainably developing global blue carbon for climate change mitigation and economic benefits through international cooperation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Kendall Valentine & Ellen R. Herbert & David C. Walters & Yaping Chen & Alexander J. Smith & Matthew L. Kirwan, 2023. "Climate-driven tradeoffs between landscape connectivity and the maintenance of the coastal carbon sink," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Miriam von Thenen & Aurelija Armoškaitė & Víctor Cordero-Penín & Sara García-Morales & Josefine B. Gottschalk & Débora Gutierrez & Malena Ripken & Pascal Thoya & Kerstin S. Schiele, 2021. "The Future of Marine Spatial Planning—Perspectives from Early Career Researchers," Sustainability, MDPI, vol. 13(24), pages 1-12, December.
    13. Suhaib A. Bandh & Fayaz A. Malla & Irteza Qayoom & Haika Mohi-Ud-Din & Aqsa Khursheed Butt & Aashia Altaf & Shahid A. Wani & Richard Betts & Thanh Hai Truong & Nguyen Dang Khoa Pham & Dao Nam Cao & Sh, 2023. "Importance of Blue Carbon in Mitigating Climate Change and Plastic/Microplastic Pollution and Promoting Circular Economy," Sustainability, MDPI, vol. 15(3), pages 1-29, February.
    14. Carolina V. Mourato & Nuno Padrão & Ester A. Serrão & Diogo Paulo, 2023. "Less Is More: Seagrass Restoration Success Using Less Vegetation per Area," Sustainability, MDPI, vol. 15(17), pages 1-13, August.
    15. Yong, Wilson Thau Lym & Thien, Vun Yee & Rupert, Rennielyn & Rodrigues, Kenneth Francis, 2022. "Seaweed: A potential climate change solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Octavio Pérez-Maqueo & M. Luisa Martínez & Flor C. Sánchez-Barradas & Melanie Kolb, 2018. "Assessing Nature-Based Coastal Protection against Disasters Derived from Extreme Hydrometeorological Events in Mexico," Sustainability, MDPI, vol. 10(5), pages 1-17, April.
    17. Oscar Teka & Laurent G. Houessou & Bruno A. Djossa & Yvonne Bachmann & Madjidou Oumorou & Brice Sinsin, 2019. "Mangroves in Benin, West Africa: threats, uses and conservation opportunities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1153-1169, June.
    18. Novia Arinda Pradisty & Frida Sidik & Yuntha Bimantara & Ipanna Enggar Susetya & Mohammad Basyuni, 2022. "Litterfall and Associated Macrozoobenthic of Restored Mangrove Forests in Abandoned Aquaculture Ponds," Sustainability, MDPI, vol. 14(13), pages 1-19, July.
    19. Valerie Hagger & Thomas A. Worthington & Catherine E. Lovelock & Maria Fernanda Adame & Tatsuya Amano & Benjamin M. Brown & Daniel A. Friess & Emily Landis & Peter J. Mumby & Tiffany H. Morrison & Kat, 2022. "Drivers of global mangrove loss and gain in social-ecological systems," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Sinéad M. Crotty & Daniele Pinton & Alberto Canestrelli & Hallie S. Fischman & Collin Ortals & Nicholas R. Dahl & Sydney Williams & Tjeerd J. Bouma & Christine Angelini, 2023. "Faunal engineering stimulates landscape-scale accretion in southeastern US salt marshes," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:163:y:2020:i:1:d:10.1007_s10584-020-02815-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.