IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v135y2016i3d10.1007_s10584-016-1596-2.html
   My bibliography  Save this article

Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna

Author

Listed:
  • M. Žuvela-Aloise

    (ZAMG – Zentralanstalt für Meteorologie und Geodynamik)

  • R. Koch

    (ZAMG – Zentralanstalt für Meteorologie und Geodynamik)

  • S. Buchholz

    (DWD – Deutscher Wetterdienst)

  • B. Früh

    (DWD – Deutscher Wetterdienst)

Abstract

The climate warming trend and city growth contribute to the generation of excessive heat in urban areas. This could be reduced by introducing vegetation and open water surfaces in urban design. This study evaluates the cooling efficiency of green and blue infrastructure to reduce urban heat load using a set of idealized case simulations and a real city model application for Vienna. The idealized case simulations show that the cooling effect of green and blue infrastructure is dependent on the building type, time of the day and in case of blue infrastructure, the water temperature. The temperature reduction and the size of the cooled surface are largest in densely built-up environments. The real case simulations for Vienna, which include the terrain, inhomogeneous land use distribution and observed climate data, show that urban planning measures should be applied extensively in order to gain substantial cooling on the city scale. The best efficiency can be reached by targeted implementation of minor but combined measures such as a decrease in building density of 10 %, a decrease in pavement by 20 % and an enlargement in green or water spaces by 20 %. Additionally, the modelling results show that equal heat load mitigation measures may have different efficiency dependent on location in the city due to the prevailing meteorological conditions and land use characteristics in the neighbouring environment.

Suggested Citation

  • M. Žuvela-Aloise & R. Koch & S. Buchholz & B. Früh, 2016. "Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna," Climatic Change, Springer, vol. 135(3), pages 425-438, April.
  • Handle: RePEc:spr:climat:v:135:y:2016:i:3:d:10.1007_s10584-016-1596-2
    DOI: 10.1007/s10584-016-1596-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1596-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1596-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maren Stollberg & Alexander von Birgelen, 2023. "Living Wall Plants Are Affected by and Affect Temperature: How to (not) Measure Plants’ Temperature in a Living Wall Experiment," Sustainability, MDPI, vol. 15(15), pages 1-39, July.
    2. Florian Reinwald & Christiane Brandenburg & Anna Gabor & Peter Hinterkörner & Astrid Kainz & Florian Kraus & Zita Ring & Bernhard Scharf & Tanja Tötzer & Doris Damyanovic, 2021. "Multi-Level Toolset for Steering Urban Green Infrastructure to Support the Development of Climate-Proofed Cities," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    3. Conghui Zhou & Yun Wu, 2020. "A Planning Support Tool for Layout Integral Optimization of Urban Blue–Green Infrastructure," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
    4. Nóra Skarbit & János Unger & Tamás Gál, 2024. "Evaluating the Impact of Heat Mitigation Strategies Using Added Urban Green Spaces during a Heatwave in a Medium-Sized City," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    5. Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
    6. Yuhe Ma & Mudan Zhao & Jianbo Li & Jian Wang & Lifa Hu, 2021. "Cooling Effect of Different Land Cover Types: A Case Study in Xi’an and Xianyang, China," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    7. Jan Geletič & Michal Lehnert & Petr Dobrovolný & Maja Žuvela-Aloise, 2019. "Spatial modelling of summer climate indices based on local climate zones: expected changes in the future climate of Brno, Czech Republic," Climatic Change, Springer, vol. 152(3), pages 487-502, March.
    8. Lie Ma & Dandan Li & Xiaobo Tao & Haifeng Dong & Bei He & Xiaosu Ye, 2017. "Inequality, Bi-Polarization and Mobility of Urban Infrastructure Investment in China’s Urban System," Sustainability, MDPI, vol. 9(9), pages 1-19, September.
    9. Zhou, Yang & Tang, Zhen & Qian, Xiaoyan & Mardani, Abbas, 2021. "Digital manufacturing and urban conservation based on the Internet of Things and 5 G technology in the context of economic growth," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    10. Morawetz, Ulrich & Mayr, Dieter & Damyanovic, Doris, 2016. "Ökonomische Effekte grüner Infrastruktur als Teil eines Grünflächenfaktors. Ein Leitfaden," Discussion Papers DP-66-2016, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    11. Ying Zhang & Xijun Hu & Zheng Liu & Chunling Zhou & Hong Liang, 2022. "A Greening Strategy of Mitigation of the Thermal Environment for Coastal Sloping Urban Space," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    12. Maria Juschten & Florian Reinwald & Roswitha Weichselbaumer & Alexandra Jiricka-Pürrer, 2021. "Developing an Integrative Theoretical Framework for Climate Proofing Spatial Planning across Sectors, Policy Levels, and Planning Areas," Land, MDPI, vol. 10(8), pages 1-20, July.
    13. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    14. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    15. Ulrich B. Morawetz & H. Allen Klaiber, 2022. "Does housing policy impact income sorting near urban amenities? Evidence from Vienna, Austria," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(2), pages 411-454, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:135:y:2016:i:3:d:10.1007_s10584-016-1596-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.