IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v110y2012i1p385-401.html
   My bibliography  Save this article

Extreme climate events in China: IPCC-AR4 model evaluation and projection

Author

Listed:
  • Zhihong Jiang
  • Jie Song
  • Laurent Li
  • Weilin Chen
  • Zhifu Wang
  • Ji Wang

Abstract

No abstract is available for this item.

Suggested Citation

  • Zhihong Jiang & Jie Song & Laurent Li & Weilin Chen & Zhifu Wang & Ji Wang, 2012. "Extreme climate events in China: IPCC-AR4 model evaluation and projection," Climatic Change, Springer, vol. 110(1), pages 385-401, January.
  • Handle: RePEc:spr:climat:v:110:y:2012:i:1:p:385-401
    DOI: 10.1007/s10584-011-0090-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-011-0090-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-011-0090-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamal Ahmed & Zafar Iqbal & Najeebullah Khan & Balach Rasheed & Nadeem Nawaz & Irfan Malik & Mohammad Noor, 2020. "Quantitative assessment of precipitation changes under CMIP5 RCP scenarios over the northern sub-Himalayan region of Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7831-7845, December.
    2. Zhansheng Li & Xiaolin Guo & Yuan Yang & Yang Hong & Zhongjing Wang & Liangzhi You, 2019. "Heatwave Trends and the Population Exposure Over China in the 21st Century as Well as Under 1.5 °C and 2.0 °C Global Warmer Future Scenarios," Sustainability, MDPI, vol. 11(12), pages 1-21, June.
    3. Yue Sui & Xianmei Lang & Dabang Jiang, 2014. "Time of emergence of climate signals over China under the RCP4.5 scenario," Climatic Change, Springer, vol. 125(2), pages 265-276, July.
    4. Xiaojun Guo & Jianbin Huang & Yong Luo & Zongci Zhao & Ying Xu, 2016. "Projection of precipitation extremes for eight global warming targets by 17 CMIP5 models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2299-2319, December.
    5. Hong Ying & Hongyan Zhang & Ying Sun & Jianjun Zhao & Zhengxiang Zhang & Xiaoyi Guo & Hang Zhao & Rihan Wu & Guorong Deng, 2020. "CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    6. Liu Yuhui & Li Zhiling, 2021. "Stalagmite flooding frequency record since the middle Little Ice Age from Central China," Climatic Change, Springer, vol. 164(3), pages 1-13, February.
    7. Sifan Hu & Jin Chen, 2016. "Place-based inter-generational communication on local climate improves adolescents’ perceptions and willingness to mitigate climate change," Climatic Change, Springer, vol. 138(3), pages 425-438, October.
    8. Xunfeng Yang & Lianfa Li & Jinfeng Wang & Jixia Huang & Shijun Lu, 2015. "Cardiovascular Mortality Associated with Low and High Temperatures: Determinants of Inter-Region Vulnerability in China," IJERPH, MDPI, vol. 12(6), pages 1-16, May.
    9. Qian Wang & Qi-peng Zhang & Yang-yang Liu & Lin-jing Tong & Yan-zhen Zhang & Xiao-yu Li & Jian-long Li, 2020. "Characterizing the spatial distribution of typical natural disaster vulnerability in China from 2010 to 2017," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 3-15, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:110:y:2012:i:1:p:385-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.