IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v11y2024i1d10.1007_s40745-022-00424-6.html
   My bibliography  Save this article

Machine Learning Algorithms for Crime Prediction under Indian Penal Code

Author

Listed:
  • Rabia Musheer Aziz

    (VIT Bhopal University)

  • Prajwal Sharma

    (VIT Bhopal University)

  • Aftab Hussain

    (VIT Bhopal University)

Abstract

In this paper, the authors propose a data-driven approach to draw insightful knowledge from the Indian crime data. The proposed approach can be helpful for police and other law enforcement bodies in India for controlling and preventing crime region-wise. In the proposed approach different regression models are built based on different regression algorithms, viz., random forest regression (RFR), decision tree regression (DTR), multiple linear regression (MLR), simple linear regression (SLR), and support vector regression (SVR) after pre-processing the data using MySQL Workbench and R programming. These regression models can predict 28 different types of IPC cognizable crime counts and also a total number of Indian Penal Code (IPC) cognizable crime counts region-wise, state-wise, and year-wise (for all over the country) provided the desired inputs to the model. Data visualization techniques, namely, chord diagrams and map plots, are used to visualize pre-processed data (corresponding to the years 2014 to 2020) and predicted data by the relatively best regression model for the year 2022. For the chosen data, it is concluded that Random Forest Regression (RFR), which predicts total IPC cognizable crime, fits relatively the best, with a 0.96 adjusted r squared value and a MAPE value of 0.2, and among regression models predicting region-wise theft crime count, the random forest regression-based model relatively fits the best, with an adjusted R squared value of 0.96 and a MAPE value of 0.166. These regression models predict that Andhra Pradesh state will have the highest crime counts, with Adilabad district at the top, having 31,933 predicted crime counts.

Suggested Citation

  • Rabia Musheer Aziz & Prajwal Sharma & Aftab Hussain, 2024. "Machine Learning Algorithms for Crime Prediction under Indian Penal Code," Annals of Data Science, Springer, vol. 11(1), pages 379-410, February.
  • Handle: RePEc:spr:aodasc:v:11:y:2024:i:1:d:10.1007_s40745-022-00424-6
    DOI: 10.1007/s40745-022-00424-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-022-00424-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-022-00424-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:11:y:2024:i:1:d:10.1007_s40745-022-00424-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.