IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v10y2023i2d10.1007_s40745-020-00249-1.html
   My bibliography  Save this article

Parametric and Interval Estimation Under Step-Stress Partially Accelerated Life Tests Using Adaptive Type-II Progressive Hybrid Censoring

Author

Listed:
  • Intekhab Alam

    (Aligarh Muslim University)

  • Aquil Ahmed

    (Aligarh Muslim University)

Abstract

In this paper, the likelihood estimation of model parameters and acceleration factor are considered under step-stress partially accelerated life test using adaptive type-II progressive hybrid censoring scheme, when the lifetime of the test units follows Exponentiated Pareto distribution. The numerical values of Maximum likelihood estimators are obtained using the Newton–Raphson technique. The performance of model parameters and acceleration factor in terms of mean square errors and biases are evaluated using the Monte-Carlo simulation technique.

Suggested Citation

  • Intekhab Alam & Aquil Ahmed, 2023. "Parametric and Interval Estimation Under Step-Stress Partially Accelerated Life Tests Using Adaptive Type-II Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 10(2), pages 441-453, April.
  • Handle: RePEc:spr:aodasc:v:10:y:2023:i:2:d:10.1007_s40745-020-00249-1
    DOI: 10.1007/s40745-020-00249-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-020-00249-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-020-00249-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kundu, Debasis & Joarder, Avijit, 2006. "Analysis of Type-II progressively hybrid censored data," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2509-2528, June.
    2. Morris H. Degroot & Prem K. Goel, 1979. "Bayesian estimation and optimal designs in partially accelerated life testing," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(2), pages 223-235, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    2. M. Nassar & S. G. Nassr & S. Dey, 2017. "Analysis of Burr Type-XII Distribution Under Step Stress Partially Accelerated Life Tests with Type-I and Adaptive Type-II Progressively Hybrid Censoring Schemes," Annals of Data Science, Springer, vol. 4(2), pages 227-248, June.
    3. Alaa H. Abdel-Hamid & Atef F. Hashem, 2021. "Inference for the Exponential Distribution under Generalized Progressively Hybrid Censored Data from Partially Accelerated Life Tests with a Time Transformation Function," Mathematics, MDPI, vol. 9(13), pages 1-28, June.
    4. Manoj Chacko & Rakhi Mohan, 2019. "Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals," Computational Statistics, Springer, vol. 34(1), pages 233-252, March.
    5. Park, Sangun & Ng, Hon Keung Tony & Chan, Ping Shing, 2015. "On the Fisher information and design of a flexible progressive censored experiment," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 142-149.
    6. Do Sun Bai & Myung Soo Kim, 1993. "Optimum simple step‐stress accelerated life tests for weibull distribution and type I censoring," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(2), pages 193-210, March.
    7. Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
    8. Ismail, Ali A., 2019. "Statistical analysis of Type-I progressively hybrid censored data under constant-stress life testing model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 138-150.
    9. Tian, Yuzhu & Zhu, Qianqian & Tian, Maozai, 2015. "Estimation for mixed exponential distributions under type-II progressively hybrid censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 85-96.
    10. M. M. Mohie El-Din & M. Nagy & M. H. Abu-Moussa, 2019. "Estimation and Prediction for Gompertz Distribution Under the Generalized Progressive Hybrid Censored Data," Annals of Data Science, Springer, vol. 6(4), pages 673-705, December.
    11. Zhang, Chunfang & Wang, Liang & Bai, Xuchao & Huang, Jianan, 2022. "Bayesian reliability analysis for copula based step-stress partially accelerated dependent competing risks model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    12. Debasis Kundu, 2007. "Comments on: Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 276-278, August.
    13. Manoj Kumar & Anurag Pathak & Sukriti Soni, 2019. "Bayesian Inference for Rayleigh Distribution Under Step-Stress Partially Accelerated Test with Progressive Type-II Censoring with Binomial Removal," Annals of Data Science, Springer, vol. 6(1), pages 117-152, March.
    14. Sukhdev Singh & Reza Arabi Belaghi & Mehri Noori Asl, 2019. "Estimation and prediction using classical and Bayesian approaches for Burr III model under progressive type-I hybrid censoring," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 746-764, August.
    15. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.
    16. Ling, M.H. & Hu, X.W., 2020. "Optimal design of simple step-stress accelerated life tests for one-shot devices under Weibull distributions," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Ritwik Bhattacharya & Biswabrata Pradhan, 2017. "Computation of optimum Type-II progressively hybrid censoring schemes using variable neighborhood search algorithm," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 802-821, December.
    18. Insua, David Rios & Ruggeri, Fabrizio & Soyer, Refik & Wilson, Simon, 2020. "Advances in Bayesian decision making in reliability," European Journal of Operational Research, Elsevier, vol. 282(1), pages 1-18.
    19. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
    20. R. Arabi Belaghi & M. Noori Asl, 2019. "Estimation based on progressively type-I hybrid censored data from the Burr XII distribution," Statistical Papers, Springer, vol. 60(3), pages 761-803, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:10:y:2023:i:2:d:10.1007_s40745-020-00249-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.