IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v311y2022i2d10.1007_s10479-020-03742-1.html
   My bibliography  Save this article

Karush–Kuhn–Tucker optimality conditions and duality for multiobjective semi-infinite programming with vanishing constraints

Author

Listed:
  • Le Thanh Tung

    (Can Tho University)

Abstract

This paper concentrates on studying multiobjective semi-infinite programming with vanishing constraints. Firstly, the necessary and sufficient Karush–Kuhn–Tucker optimality conditions for multiobjective semi-infinite programming with vanishing constraints are considered. Then, we formulate Wolfe and Mond–Weir type dual problems and establish duality relations under convexity assumptions. Some examples are proposed to verify our results.

Suggested Citation

  • Le Thanh Tung, 2022. "Karush–Kuhn–Tucker optimality conditions and duality for multiobjective semi-infinite programming with vanishing constraints," Annals of Operations Research, Springer, vol. 311(2), pages 1307-1334, April.
  • Handle: RePEc:spr:annopr:v:311:y:2022:i:2:d:10.1007_s10479-020-03742-1
    DOI: 10.1007/s10479-020-03742-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03742-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03742-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan-J. Rückmann & Oliver Stein, 2001. "On Linear and Linearized Generalized Semi-Infinite Optimization Problems," Annals of Operations Research, Springer, vol. 101(1), pages 191-208, January.
    2. S. K. Mishra & Vinay Singh & Vivek Laha, 2016. "On duality for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 243(1), pages 249-272, August.
    3. Thai Doan Chuong & Jen-Chih Yao, 2014. "Isolated and Proper Efficiencies in Semi-Infinite Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 447-462, August.
    4. Dominik Dorsch & Vladimir Shikhman & Oliver Stein, 2012. "Mathematical programs with vanishing constraints: critical point theory," Journal of Global Optimization, Springer, vol. 52(3), pages 591-605, March.
    5. M. A. Goberna & M. A. López, 2018. "Recent contributions to linear semi-infinite optimization: an update," Annals of Operations Research, Springer, vol. 271(1), pages 237-278, December.
    6. S. Ito & Y. Liu & K.L. Teo, 2000. "A Dual Parametrization Method for Convex Semi-Infinite Programming," Annals of Operations Research, Springer, vol. 98(1), pages 189-213, December.
    7. Sajjad Kazemi & Nader Kanzi, 2018. "Constraint Qualifications and Stationary Conditions for Mathematical Programming with Non-differentiable Vanishing Constraints," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 800-819, December.
    8. Thai Doan Chuong & Do Sang Kim, 2018. "Normal regularity for the feasible set of semi-infinite multiobjective optimization problems with applications," Annals of Operations Research, Springer, vol. 267(1), pages 81-99, August.
    9. Yogendra Pandey & S. K. Mishra, 2018. "Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators," Annals of Operations Research, Springer, vol. 269(1), pages 549-564, October.
    10. A. Ferrer & M. A. Goberna & E. González-Gutiérrez & M. I. Todorov, 2017. "A comparative note on the relaxation algorithms for the linear semi-infinite feasibility problem," Annals of Operations Research, Springer, vol. 258(2), pages 587-612, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balendu Bhooshan Upadhyay & Arnav Ghosh, 2023. "On Constraint Qualifications for Mathematical Programming Problems with Vanishing Constraints on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 1-35, October.
    2. Qingjie Hu & Jiguang Wang & Yu Chen, 2020. "New dualities for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 287(1), pages 233-255, April.
    3. Tadeusz Antczak, 2022. "Optimality conditions and Mond–Weir duality for a class of differentiable semi-infinite multiobjective programming problems with vanishing constraints," 4OR, Springer, vol. 20(3), pages 417-442, September.
    4. Tadeusz Antczak, 2023. "On directionally differentiable multiobjective programming problems with vanishing constraints," Annals of Operations Research, Springer, vol. 328(2), pages 1181-1212, September.
    5. Ali Sadeghieh & Nader Kanzi & Giuseppe Caristi & David Barilla, 2022. "On stationarity for nonsmooth multiobjective problems with vanishing constraints," Journal of Global Optimization, Springer, vol. 82(4), pages 929-949, April.
    6. Kin Keung Lai & Shashi Kant Mishra & Sanjeev Kumar Singh & Mohd Hassan, 2022. "Stationary Conditions and Characterizations of Solution Sets for Interval-Valued Tightened Nonlinear Problems," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    7. Bhuwan Chandra Joshi & Murari Kumar Roy & Abdelouahed Hamdi, 2024. "On Semi-Infinite Optimization Problems with Vanishing Constraints Involving Interval-Valued Functions," Mathematics, MDPI, vol. 12(7), pages 1-19, March.
    8. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "The CoMirror algorithm with random constraint sampling for convex semi-infinite programming," Annals of Operations Research, Springer, vol. 295(2), pages 809-841, December.
    9. S. Lämmel & V. Shikhman, 2022. "On nondegenerate M-stationary points for sparsity constrained nonlinear optimization," Journal of Global Optimization, Springer, vol. 82(2), pages 219-242, February.
    10. Hui Huang & Haole Zhu, 2022. "Stationary Condition for Borwein Proper Efficient Solutions of Nonsmooth Multiobjective Problems with Vanishing Constraints," Mathematics, MDPI, vol. 10(23), pages 1-18, December.
    11. Souvik Das & Ashwin Aravind & Ashish Cherukuri & Debasish Chatterjee, 2022. "Near-optimal solutions of convex semi-infinite programs via targeted sampling," Annals of Operations Research, Springer, vol. 318(1), pages 129-146, November.
    12. Vivek Laha & Harsh Narayan Singh, 2023. "On quasidifferentiable mathematical programs with equilibrium constraints," Computational Management Science, Springer, vol. 20(1), pages 1-20, December.
    13. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    14. S. Ito & Y. Liu & K. Teo, 2004. "An Approximation Approach to Non-strictly Convex Quadratic Semi-infinite Programming," Journal of Global Optimization, Springer, vol. 30(2), pages 195-206, November.
    15. Alexander Mitsos & Angelos Tsoukalas, 2015. "Global optimization of generalized semi-infinite programs via restriction of the right hand side," Journal of Global Optimization, Springer, vol. 61(1), pages 1-17, January.
    16. A. Auslender & A. Ferrer & M. Goberna & M. López, 2015. "Comparative study of RPSALG algorithm for convex semi-infinite programming," Computational Optimization and Applications, Springer, vol. 60(1), pages 59-87, January.
    17. Yuen, Robert & Stoev, Stilian & Cooley, Daniel, 2020. "Distributionally robust inference for extreme Value-at-Risk," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 70-89.
    18. J. J. Ye & S. Y. Wu, 2008. "First Order Optimality Conditions for Generalized Semi-Infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 419-434, May.
    19. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "An inexact primal-dual algorithm for semi-infinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 501-544, June.
    20. Chen Ling & Qin Ni & Liqun Qi & Soon-Yi Wu, 2010. "A new smoothing Newton-type algorithm for semi-infinite programming," Journal of Global Optimization, Springer, vol. 47(1), pages 133-159, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:311:y:2022:i:2:d:10.1007_s10479-020-03742-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.