IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v296y2021i1d10.1007_s10479-019-03178-2.html
   My bibliography  Save this article

Solving multi-objective integer indefinite quadratic fractional programs

Author

Listed:
  • Amal Mekhilef

    (USTHB)

  • Mustapha Moulaï

    (USTHB)

  • Wassila Drici

    (USTHB)

Abstract

In this paper, we describe an exact algorithm for solving a multi-objective integer indefinite quadratic fractional maximization problem. The algorithm generates the whole set of efficient solutions of the above mentioned problem. We optimize at first one of the objective functions in the original feasible region; in an iterative way and through the introduction of auxiliary constraints (efficient cut or branching constraint), the same objective function is optimized over progressively restricted or separated parts of the original feasible region, each time we get a candidate solution for non dominated solution, the efficient set is updated, the process ends when there is no unexplored parts of the original domain. The proposed method is based on an efficient cut which allows to reduce the feasible set avoiding non efficient solutions, the simplex like algorithm to solve a mono objective quadratic fractional maximization problem, and the classical branch and bound technique for integer decision variables. We establish theoretical results which prove the effectiveness of this new exact method, for illustration, numerical experiments are reported.

Suggested Citation

  • Amal Mekhilef & Mustapha Moulaï & Wassila Drici, 2021. "Solving multi-objective integer indefinite quadratic fractional programs," Annals of Operations Research, Springer, vol. 296(1), pages 821-840, January.
  • Handle: RePEc:spr:annopr:v:296:y:2021:i:1:d:10.1007_s10479-019-03178-2
    DOI: 10.1007/s10479-019-03178-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03178-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03178-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cinzia Colapinto & Raja Jayaraman & Simone Marsiglio, 2017. "Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review," Annals of Operations Research, Springer, vol. 251(1), pages 7-40, April.
    2. Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
    3. Thai Doan Chuong & Do Sang Kim, 2016. "A class of nonsmooth fractional multiobjective optimization problems," Annals of Operations Research, Springer, vol. 244(2), pages 367-383, September.
    4. Ekta Jain & Kalpana Dahiya & Vanita Verma, 2018. "Integer quadratic fractional programming problems with bounded variables," Annals of Operations Research, Springer, vol. 269(1), pages 269-295, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Namrata Rani & Vandana Goyal & Deepak Gupta, 2021. "A solution procedure for multi-objective fully quadratic fractional optimization model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1447-1458, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thai Doan Chuong, 2021. "Optimality and duality in nonsmooth composite vector optimization and applications," Annals of Operations Research, Springer, vol. 296(1), pages 755-777, January.
    2. Podinovski, Vladislav V., 2013. "Non-dominance and potential optimality for partial preference relations," European Journal of Operational Research, Elsevier, vol. 229(2), pages 482-486.
    3. Jang Ho Kim & Yongjae Lee & Woo Chang Kim & Frank J. Fabozzi, 2022. "Goal-based investing based on multi-stage robust portfolio optimization," Annals of Operations Research, Springer, vol. 313(2), pages 1141-1158, June.
    4. Wassila Drici & Fatma Zohra Ouail & Mustapha Moulaï, 2018. "Optimizing a linear fractional function over the integer efficient set," Annals of Operations Research, Springer, vol. 267(1), pages 135-151, August.
    5. Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
    6. Shahryar Rahnamayan & Sedigheh Mahdavi & Kalyanmoy Deb & Azam Asilian Bidgoli, 2020. "Ranking Multi-Metric Scientific Achievements Using a Concept of Pareto Optimality," Mathematics, MDPI, vol. 8(6), pages 1-46, June.
    7. Lee, Soonhui & Turner, Jonathan & Daskin, Mark S. & Homem-de-Mello, Tito & Smilowitz, Karen, 2012. "Improving fleet utilization for carriers by interval scheduling," European Journal of Operational Research, Elsevier, vol. 218(1), pages 261-269.
    8. Cinzia Colapinto & Raja Jayaraman & Fouad Ben Abdelaziz & Davide La Torre, 2020. "Environmental sustainability and multifaceted development: multi-criteria decision models with applications," Annals of Operations Research, Springer, vol. 293(2), pages 405-432, October.
    9. Christoph Stallkamp & Justus Steins & Manuel Ruck & Rebekka Volk & Frank Schultmann, 2022. "Designing a Recycling Network for the Circular Economy of Plastics with Different Multi-Criteria Optimization Approaches," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    10. C. Gutiérrez & B. Jiménez & V. Novo, 2011. "A generic approach to approximate efficiency and applications to vector optimization with set-valued maps," Journal of Global Optimization, Springer, vol. 49(2), pages 313-342, February.
    11. Xu Lei & Tang Shiyun & Deng Yanfei & Yuan Yuan, 2020. "Sustainable operation-oriented investment risk evaluation and optimization for renewable energy project: a case study of wind power in China," Annals of Operations Research, Springer, vol. 290(1), pages 223-241, July.
    12. Walter Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    13. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    14. Arben Asllani & Silvana Trimi, 2022. "COVID-19 vaccine distribution: exploring strategic alternatives for the greater good," Service Business, Springer;Pan-Pacific Business Association, vol. 16(3), pages 601-619, September.
    15. Xu, Pan & Wang, Lizhi & Beavis, William D., 2011. "An optimization approach to gene stacking," European Journal of Operational Research, Elsevier, vol. 214(1), pages 168-178, October.
    16. Tariq Mumtaz & Shahabuddin Muhammad & Muhammad Imran Aslam & Irfan Ahmed, 2022. "Inter-slice resource management for 5G radio access network using markov decision process," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 79(4), pages 541-557, April.
    17. Amir Elalouf, 2014. "Fast approximation algorithms for routing problems with hop-wise constraints," Annals of Operations Research, Springer, vol. 222(1), pages 279-291, November.
    18. B. Domenech & L. Ferrer-Martí & R. Pastor, 2022. "Multicriteria analysis of renewable-based electrification projects in developing countries," Annals of Operations Research, Springer, vol. 312(2), pages 1375-1401, May.
    19. Thai Doan Chuong, 2022. "Second-order cone programming relaxations for a class of multiobjective convex polynomial problems," Annals of Operations Research, Springer, vol. 311(2), pages 1017-1033, April.
    20. Hocine, Amine, 2018. "Meta goal programing approach for solving multi-criteria de Novo programing problemAuthor-Name: Zhuang, Zheng-Yun," European Journal of Operational Research, Elsevier, vol. 265(1), pages 228-238.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:296:y:2021:i:1:d:10.1007_s10479-019-03178-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.