IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v198y2012i1p57-8210.1007-s10479-011-0846-y.html
   My bibliography  Save this article

Time-limited polling systems with batch arrivals and phase-type service times

Author

Listed:
  • Ahmad Hanbali
  • Roland Haan
  • Richard Boucherie
  • Jan-Kees Ommeren

Abstract

In this paper, we develop a general framework to analyze polling systems with either the autonomous-server or the time-limited service discipline. According to the autonomous-server discipline, the server continues servicing a queue for a certain period of time. According to the time-limited service discipline, the server continues servicing a queue for a certain period of time or until the queue becomes empty, whichever occurs first. We consider Poisson batch arrivals and phase-type service times. It is known that these disciplines do not satisfy the well-known branching property in polling systems. Therefore, hardly any exact results exist in the literature. Our strategy is to apply an iterative scheme that is based on relating in closed-form the joint queue-lengths at the beginning and the end of a server visit to a queue. These kernel relations are derived using the theory of absorbing Markov chains. Copyright The Author(s) 2012

Suggested Citation

  • Ahmad Hanbali & Roland Haan & Richard Boucherie & Jan-Kees Ommeren, 2012. "Time-limited polling systems with batch arrivals and phase-type service times," Annals of Operations Research, Springer, vol. 198(1), pages 57-82, September.
  • Handle: RePEc:spr:annopr:v:198:y:2012:i:1:p:57-82:10.1007/s10479-011-0846-y
    DOI: 10.1007/s10479-011-0846-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-0846-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-0846-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernard Philippe & Youcef Saad & William J. Stewart, 1992. "Numerical Methods in Markov Chain Modeling," Operations Research, INFORMS, vol. 40(6), pages 1156-1179, December.
    2. Blanc, J.P.C., 1990. "Performance evaluation of polling systems by means of the power-series algorithm," Other publications TiSEM a5f5fb56-c17c-4c46-8d5e-b, Tilburg University, School of Economics and Management.
    3. Martin Eisenberg, 1972. "Queues with Periodic Service and Changeover Time," Operations Research, INFORMS, vol. 20(2), pages 440-451, April.
    4. Blanc, J.P.C., 1998. "The power-series algorithm for polling systems with time limits," Other publications TiSEM 3366bad3-964d-4039-82cc-a, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chesoong Kim & Alexander Dudin & Olga Dudina & Valentina Klimenok, 2020. "Analysis of Queueing System with Non-Preemptive Time Limited Service and Impatient Customers," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 401-432, June.
    2. Vladimir Vishnevsky & Olga Semenova, 2021. "Polling Systems and Their Application to Telecommunication Networks," Mathematics, MDPI, vol. 9(2), pages 1-30, January.
    3. Arnaud Devos & Joris Walraevens & Dieter Fiems & Herwig Bruneel, 2022. "Approximations for the performance evaluation of a discrete-time two-class queue with an alternating service discipline," Annals of Operations Research, Springer, vol. 310(2), pages 477-503, March.
    4. Jan-Kees Ommeren & Ahmad Al Hanbali & Richard J. Boucherie, 2020. "Analysis of polling models with a self-ruling server," Queueing Systems: Theory and Applications, Springer, vol. 94(1), pages 77-107, February.
    5. Wanlu Gu & Neng Fan & Haitao Liao, 2019. "Evaluating readmission rates and discharge planning by analyzing the length-of-stay of patients," Annals of Operations Research, Springer, vol. 276(1), pages 89-108, May.
    6. A. Oblakova & A. Al Hanbali & R. J. Boucherie & J. C. W. Ommeren & W. H. M. Zijm, 2019. "An exact root-free method for the expected queue length for a class of discrete-time queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 92(3), pages 257-292, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeriy Naumov, 2024. "A Matrix-Multiplicative Solution for Multi-Dimensional QBD Processes," Mathematics, MDPI, vol. 12(3), pages 1-15, January.
    2. Blanc, J.P.C. & van der Mei, R.D., 1992. "Optimization of polling systems with Bernoulli schedules," Research Memorandum FEW 563, Tilburg University, School of Economics and Management.
    3. Sem Borst & Onno Boxma, 2018. "Polling: past, present, and perspective," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 335-369, October.
    4. Tayfur Altiok & Goang An Shiue, 1995. "Single‐stage, multi‐product production/inventory systems with lost sales," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 889-913, September.
    5. Blanc, J.P.C. & Lenzini, L., 1995. "Analysis of communication systems with timed token protocols using the power-series algorithm," Discussion Paper 1995-100, Tilburg University, Center for Economic Research.
    6. Abderezak Touzene, 2008. "A Tensor Sum Preconditioner for Stochastic Automata Networks," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 234-242, May.
    7. Saffer, Zsolt & Telek, Miklós, 2009. "Stability of periodic polling system with BMAP arrivals," European Journal of Operational Research, Elsevier, vol. 197(1), pages 188-195, August.
    8. van den Hout, W.B. & Blanc, J.P.C., 1994. "The Power-Series Algorithm for a Wide Class of Markov Processes," Other publications TiSEM 54b74f52-9378-47b9-aa0f-5, Tilburg University, School of Economics and Management.
    9. Blanc, J.P.C., 1993. "Performance Analysis and Optimization with the Power-Series Algorithm," Other publications TiSEM a1a4fc9c-dcb5-4679-9ef1-e, Tilburg University, School of Economics and Management.
    10. Blanc, J.P.C., 1996. "Optimization of Periodic Polling Systems with Non-Preemptive, Time-Limited Service," Discussion Paper 1996-63, Tilburg University, Center for Economic Research.
    11. Kao, Edward P. C. & Wilson, Sandra D., 1999. "Analysis of nonpreemptive priority queues with multiple servers and two priority classes," European Journal of Operational Research, Elsevier, vol. 118(1), pages 181-193, October.
    12. Dimitris Bertsimas & José Niño-Mora, 1996. "Optimization of multiclass queueing networks with changeover times via the achievable region approach: Part I, the single-station case," Economics Working Papers 302, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 1998.
    13. Blanc, J.P.C., 1999. "On the Stability of Communication Systems with Timed Token Protocols," Other publications TiSEM bd28ec2d-1fc2-447d-9c0a-c, Tilburg University, School of Economics and Management.
    14. Jan-Kees Ommeren & Ahmad Al Hanbali & Richard J. Boucherie, 2020. "Analysis of polling models with a self-ruling server," Queueing Systems: Theory and Applications, Springer, vol. 94(1), pages 77-107, February.
    15. van den Hout, W.B. & Blanc, J.P.C., 1994. "The power-series algorithm for Markovian queueing networks," Other publications TiSEM 1312893d-c375-4b17-bbbe-3, Tilburg University, School of Economics and Management.
    16. Amy N. Langville & William J. Stewart, 2004. "Testing the Nearest Kronecker Product Preconditioner on Markov Chains and Stochastic Automata Networks," INFORMS Journal on Computing, INFORMS, vol. 16(3), pages 300-315, August.
    17. Shaler Stidham, 2002. "Analysis, Design, and Control of Queueing Systems," Operations Research, INFORMS, vol. 50(1), pages 197-216, February.
    18. Marko A. A. Boon & Onno J. Boxma & Offer Kella & Masakiyo Miyazawa, 2017. "Queue-length balance equations in multiclass multiserver queues and their generalizations," Queueing Systems: Theory and Applications, Springer, vol. 86(3), pages 277-299, August.
    19. Kirkavak, Nureddin & Dincer, Cemal, 1999. "The general behavior of pull production systems: The allocation problems," European Journal of Operational Research, Elsevier, vol. 119(2), pages 479-494, December.
    20. Tetsuji Hirayama, 2012. "Analysis of multiclass Markovian polling systems with feedback and composite scheduling algorithms," Annals of Operations Research, Springer, vol. 198(1), pages 83-123, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:198:y:2012:i:1:p:57-82:10.1007/s10479-011-0846-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.