IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v73y2021i5d10.1007_s10463-020-00772-1.html
   My bibliography  Save this article

Mellin–Meijer kernel density estimation on $${{\mathbb {R}}}^+$$ R +

Author

Listed:
  • Gery Geenens

    (UNSW Sydney)

Abstract

Kernel density estimation is a nonparametric procedure making use of the smoothing power of the convolution operation. Yet, it performs poorly when the density of a positive variable is estimated, due to boundary issues. So, various extensions of the kernel estimator allegedly suitable for $${\mathbb {R}}^+$$ R + -supported densities, such as those using asymmetric kernels, abound in the literature. Those, however, are not based on any valid smoothing operation. By contrast, in this paper a kernel density estimator is defined through the Mellin convolution, the natural analogue on $${\mathbb {R}}^+$$ R + of the usual convolution. From there, a class of asymmetric kernels related to Meijer G-functions is suggested, and asymptotic properties of this ‘Mellin–Meijer kernel density estimator’ are presented. In particular, its pointwise- and $$L_2$$ L 2 -consistency (with optimal rate of convergence) are established for a large class of densities, including densities unbounded at 0 and showing power-law decay in their right tail.

Suggested Citation

  • Gery Geenens, 2021. "Mellin–Meijer kernel density estimation on $${{\mathbb {R}}}^+$$ R +," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 953-977, October.
  • Handle: RePEc:spr:aistmt:v:73:y:2021:i:5:d:10.1007_s10463-020-00772-1
    DOI: 10.1007/s10463-020-00772-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-020-00772-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-020-00772-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Shunpu, 2010. "A note on the performance of the gamma kernel estimators at the boundary," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 548-557, April.
    2. Gaku Igarashi & Yoshihide Kakizawa, 2018. "Generalised gamma kernel density estimation for nonnegative data and its bias reduction," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(3), pages 598-639, July.
    3. Song Chen, 2000. "Probability Density Function Estimation Using Gamma Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 471-480, September.
    4. Dai, J. & Sperlich, S., 2010. "Simple and effective boundary correction for kernel densities and regression with an application to the world income and Engel curve estimation," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2487-2497, November.
    5. Gaku Igarashi, 2016. "Weighted log-normal kernel density estimation," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(22), pages 6670-6687, November.
    6. Malec, Peter & Schienle, Melanie, 2014. "Nonparametric kernel density estimation near the boundary," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 57-76.
    7. Mnatsakanov, Robert & Sarkisian, Khachatur, 2012. "Varying kernel density estimation on R+," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1337-1345.
    8. Belomestny, Denis & Schoenmakers, John, 2016. "Statistical inference for time-changed Lévy processes via Mellin transform approach," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2092-2122.
    9. Maxim Pinkovskiy & Xavier Sala-i-Martin, 2009. "Parametric Estimations of the World Distribution of Income," NBER Working Papers 15433, National Bureau of Economic Research, Inc.
    10. Masayuki Hirukawa & Mari Sakudo, 2015. "Family of the generalised gamma kernels: a generator of asymmetric kernels for nonnegative data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 41-63, March.
    11. Marchant, Carolina & Bertin, Karine & Leiva, Víctor & Saulo, Helton, 2013. "Generalized Birnbaum–Saunders kernel density estimators and an analysis of financial data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 1-15.
    12. M.C. Jones & D.A. Henderson, 2007. "Miscellanea Kernel-Type Density Estimation on the Unit Interval," Biometrika, Biometrika Trust, vol. 94(4), pages 977-984.
    13. Xiaodong Jin & Janusz Kawczak, 2003. "Birnbaum-Saunders and Lognormal Kernel Estimators for Modelling Durations in High Frequency Financial Data," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 103-124, May.
    14. Bouezmarni, Taoufik & Scaillet, Olivier, 2005. "Consistency Of Asymmetric Kernel Density Estimators And Smoothed Histograms With Application To Income Data," Econometric Theory, Cambridge University Press, vol. 21(2), pages 390-412, April.
    15. N. Balakrishnan & A. Stepanov, 2014. "On the Use of Bivariate Mellin Transform in Bivariate Random Scaling and Some Applications," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 235-244, March.
    16. Jeon, Yongho & Kim, Joseph H.T., 2013. "A gamma kernel density estimation for insurance loss data," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 569-579.
    17. Hirukawa, Masayuki & Sakudo, Mari, 2014. "Nonnegative bias reduction methods for density estimation using asymmetric kernels," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 112-123.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Kakizawa, Yoshihide, 2021. "A class of Birnbaum–Saunders type kernel density estimators for nonnegative data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    3. Kakizawa, Yoshihide, 2022. "Multivariate elliptical-based Birnbaum–Saunders kernel density estimation for nonnegative data," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    4. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.
    5. Malec, Peter & Schienle, Melanie, 2014. "Nonparametric kernel density estimation near the boundary," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 57-76.
    6. Gaku Igarashi, 2018. "Multivariate Density Estimation Using a Multivariate Weighted Log-Normal Kernel," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 247-266, August.
    7. Ouimet, Frédéric, 2022. "A symmetric matrix-variate normal local approximation for the Wishart distribution and some applications," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    8. Funke, Benedikt & Hirukawa, Masayuki, 2019. "Nonparametric estimation and testing on discontinuity of positive supported densities: a kernel truncation approach," Econometrics and Statistics, Elsevier, vol. 9(C), pages 156-170.
    9. Funke, Benedikt & Hirukawa, Masayuki, 2021. "Bias correction for local linear regression estimation using asymmetric kernels via the skewing method," Econometrics and Statistics, Elsevier, vol. 20(C), pages 109-130.
    10. Funke, Benedikt & Kawka, Rafael, 2015. "Nonparametric density estimation for multivariate bounded data using two non-negative multiplicative bias correction methods," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 148-162.
    11. Célestin C. Kokonendji & Sobom M. Somé, 2021. "Bayesian Bandwidths in Semiparametric Modelling for Nonnegative Orthant Data with Diagnostics," Stats, MDPI, vol. 4(1), pages 1-22, March.
    12. Xu Li & Juxia Xiao & Weixing Song & Jianhong Shi, 2019. "Local linear regression with reciprocal inverse Gaussian kernel," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(6), pages 733-758, August.
    13. Mohammadi, Faezeh & Izadi, Muhyiddin & Lai, Chin-Diew, 2016. "On testing whether burn-in is required under the long-run average cost," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 217-224.
    14. Hirukawa, Masayuki & Sakudo, Mari, 2019. "Another bias correction for asymmetric kernel density estimation with a parametric start," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 158-165.
    15. Doho, Libaud Rudy Aurelien & Somé, Sobom Matthieu & Banto, Jean Michel, 2023. "Inflation and west African sectoral stock price indices: An asymmetric kernel method analysis," Emerging Markets Review, Elsevier, vol. 54(C).
    16. Igarashi, Gaku & Kakizawa, Yoshihide, 2014. "Re-formulation of inverse Gaussian, reciprocal inverse Gaussian, and Birnbaum–Saunders kernel estimators," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 235-246.
    17. Gospodinov, Nikolay & Hirukawa, Masayuki, 2012. "Nonparametric estimation of scalar diffusion models of interest rates using asymmetric kernels," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 595-609.
    18. Weiran Lin & Qiuqin He, 2021. "The Influence of Potential Infection on the Relationship between Temperature and Confirmed Cases of COVID-19 in China," Sustainability, MDPI, vol. 13(15), pages 1-11, July.
    19. Masayuki Hirukawa & Mari Sakudo, 2015. "Family of the generalised gamma kernels: a generator of asymmetric kernels for nonnegative data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 41-63, March.
    20. Ye, Xu-Guo & Lin, Jin-Guan & Zhao, Yan-Yong & Hao, Hong-Xia, 2015. "Two-step estimation of the volatility functions in diffusion models with empirical applications," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 135-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:73:y:2021:i:5:d:10.1007_s10463-020-00772-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.