IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v72y2020i5d10.1007_s10463-019-00725-3.html
   My bibliography  Save this article

Some information inequalities for statistical inference

Author

Listed:
  • K. V. Harsha

    (Indian Institute of Technology Bombay)

  • Alladi Subramanyam

    (Indian Institute of Technology Bombay)

Abstract

In this paper, we first describe the generalized notion of Cramer–Rao lower bound obtained by Naudts (J Inequal Pure Appl Math 5(4), Article 102, 2004) using two families of probability density functions: the original model and an escort model. We reinterpret the results in Naudts (2004) from a statistical point of view and obtain some interesting examples in which this bound is attained. Further, we obtain information inequalities which generalize the classical Bhattacharyya bounds in both regular and non-regular cases.

Suggested Citation

  • K. V. Harsha & Alladi Subramanyam, 2020. "Some information inequalities for statistical inference," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1237-1256, October.
  • Handle: RePEc:spr:aistmt:v:72:y:2020:i:5:d:10.1007_s10463-019-00725-3
    DOI: 10.1007/s10463-019-00725-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-019-00725-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-019-00725-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amari, Shun-ichi & Ohara, Atsumi & Matsuzoe, Hiroshi, 2012. "Geometry of deformed exponential families: Invariant, dually-flat and conformal geometries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4308-4319.
    2. K.V., Harsha & K.S., Subrahamanian Moosath, 2015. "Dually flat geometries of the deformed exponential family," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 136-147.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fode Zhang & Hon Keung Tony Ng & Yimin Shi & Ruibing Wang, 2019. "Amari–Chentsov structure on the statistical manifold of models for accelerated life tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 77-105, March.
    2. K.V., Harsha & K.S., Subrahamanian Moosath, 2015. "Dually flat geometries of the deformed exponential family," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 136-147.
    3. Zhang, Fode & Shi, Yimin, 2016. "Geometry of exponential family with competing risks and censored data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 234-245.
    4. Nelson, Kenric P., 2022. "Independent Approximates enable closed-form estimation of heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
    5. Zhang, Fode & Ng, Hon Keung Tony & Shi, Yimin, 2018. "Information geometry on the curved q-exponential family with application to survival data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 788-802.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:72:y:2020:i:5:d:10.1007_s10463-019-00725-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.