IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v11y2017i3d10.1007_s11634-016-0258-6.html
   My bibliography  Save this article

General location model with factor analyzer covariance matrix structure and its applications

Author

Listed:
  • Leila Amiri

    (Shahid Beheshti University)

  • Mojtaba Khazaei

    (Shahid Beheshti University)

  • Mojtaba Ganjali

    (Shahid Beheshti University)

Abstract

General location model (GLOM) is a well-known model for analyzing mixed data. In GLOM one decomposes the joint distribution of variables into conditional distribution of continuous variables given categorical outcomes and marginal distribution of categorical variables. The first version of GLOM assumes that the covariance matrices of continuous multivariate distributions across cells, which are obtained by different combination of categorical variables, are equal. In this paper, the GLOMs are considered in both cases of equality and unequality of these covariance matrices. Three covariance structures are used across cells: the same factor analyzer, factor analyzer with unequal specific variances matrices (in the general and parsimonious forms) and factor analyzers with common factor loadings. These structures are used for both modeling covariance structure and for reducing the number of parameters. The maximum likelihood estimates of parameters are computed via the EM algorithm. As an application for these models, we investigate the classification of continuous variables within cells. Based on these models, the classification is done for usual as well as for high dimensional data sets. Finally, for showing the applicability of the proposed models for classification, results from analyzing three real data sets are presented.

Suggested Citation

  • Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2017. "General location model with factor analyzer covariance matrix structure and its applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 593-609, September.
  • Handle: RePEc:spr:advdac:v:11:y:2017:i:3:d:10.1007_s11634-016-0258-6
    DOI: 10.1007/s11634-016-0258-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-016-0258-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-016-0258-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2015. "Cluster-weighted $$t$$ t -factor analyzers for robust model-based clustering and dimension reduction," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 623-649, November.
    2. Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2013. "Clustering and classification via cluster-weighted factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 5-40, March.
    3. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.
    4. Wai-Yin Poon & Sik-Yum Lee, 1987. "Maximum likelihood estimation of multivariate polyserial and polychoric correlation coefficients," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 409-430, September.
    5. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    6. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 85-113, April.
    7. Yahong Peng & Roderick J. A. Little & Trivellore E. Raghunathan, 2004. "An Extended General Location Model for Causal Inferences from Data Subject to Noncompliance and Missing Values," Biometrics, The International Biometric Society, vol. 60(3), pages 598-607, September.
    8. A. R. de Leon & A. Soo & T. Williamson, 2011. "Classification with discrete and continuous variables via general mixed-data models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 1021-1032, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diani, Cecilia & Galimberti, Giuliano & Soffritti, Gabriele, 2022. "Multivariate cluster-weighted models based on seemingly unrelated linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    2. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
    3. Michael P. B. Gallaugher & Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2022. "Multivariate cluster weighted models using skewed distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 93-124, March.
    4. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    5. Michael P. B. Gallaugher & Paul D. McNicholas, 2019. "On Fractionally-Supervised Classification: Weight Selection and Extension to the Multivariate t-Distribution," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 232-265, July.
    6. Utkarsh J. Dang & Antonio Punzo & Paul D. McNicholas & Salvatore Ingrassia & Ryan P. Browne, 2017. "Multivariate Response and Parsimony for Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 34(1), pages 4-34, April.
    7. Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
    8. Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
    9. Maruotti, Antonello & Punzo, Antonio, 2017. "Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 475-496.
    10. Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
    11. Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2021. "Matrix Normal Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 556-575, October.
    12. Gabriele Soffritti, 2021. "Estimating the Covariance Matrix of the Maximum Likelihood Estimator Under Linear Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 594-625, October.
    13. Yang, Yu-Chen & Lin, Tsung-I & Castro, Luis M. & Wang, Wan-Lun, 2020. "Extending finite mixtures of t linear mixed-effects models with concomitant covariates," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    14. Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2015. "Cluster-weighted $$t$$ t -factor analyzers for robust model-based clustering and dimension reduction," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 623-649, November.
    15. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    16. Benjamin Auder & Elisabeth Gassiat & Mor Absa Loum, 2021. "Least squares moment identification of binary regression mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(4), pages 561-593, May.
    17. Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
    18. Antonio Punzo & Salvatore Ingrassia & Antonello Maruotti, 2021. "Multivariate hidden Markov regression models: random covariates and heavy-tailed distributions," Statistical Papers, Springer, vol. 62(3), pages 1519-1555, June.
    19. Hu, Hao & Yao, Weixin & Wu, Yichao, 2017. "The robust EM-type algorithms for log-concave mixtures of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 14-26.
    20. Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:11:y:2017:i:3:d:10.1007_s11634-016-0258-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.