IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v236y2022i1p209-220.html
   My bibliography  Save this article

Finding the minimal cut sequences of dynamic, repairable, and reconfigurable systems from Generalized Boolean logic Driven Markov Process models

Author

Listed:
  • Pierre-Yves Piriou
  • Jean-Marc Faure
  • Jean-Jacques Lesage

Abstract

Minimal cut sequences computation is the main objective of qualitative safety analysis of dynamic systems. This article shows first that the existing definitions of minimal cut sequences are not suitable when these systems are both repairable and reconfigurable. A new definition for this class of systems as well as an algorithm to compute these sequences from a safety analysis model, in the form of a Generalized Boolean logic Driven Markov Processes model, are then proposed. These contributions are illustrated on a case study from power industry. Comparison of the obtained minimal cut sequences to those which are yielded by algorithms based on the previous definitions permits to highlight the relevance of the approach.

Suggested Citation

  • Pierre-Yves Piriou & Jean-Marc Faure & Jean-Jacques Lesage, 2022. "Finding the minimal cut sequences of dynamic, repairable, and reconfigurable systems from Generalized Boolean logic Driven Markov Process models," Journal of Risk and Reliability, , vol. 236(1), pages 209-220, February.
  • Handle: RePEc:sae:risrel:v:236:y:2022:i:1:p:209-220
    DOI: 10.1177/1748006X19827128
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X19827128
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X19827128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rauzy, Antoine B., 2011. "Sequence Algebra, Sequence Decision Diagrams and Dynamic Fault Trees," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 785-792.
    2. Piriou, Pierre-Yves & Faure, Jean-Marc & Lesage, Jean-Jacques, 2017. "Generalized Boolean logic Driven Markov Processes: A powerful modeling framework for Model-Based Safety Analysis of dynamic repairable and reconfigurable systems," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 57-68.
    3. Brameret, P.-A. & Rauzy, A. & Roussel, J.-M., 2015. "Automated generation of partial Markov chain from high level descriptions," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 179-187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rauzy, Antoine & Blériot-Fabre, Chaire, 2015. "Towards a sound semantics for dynamic fault trees," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 184-191.
    2. Liang, Qingzhu & Yang, Yinghao & Zhang, Hang & Peng, Changhong & Lu, Jianchao, 2022. "Analysis of simplification in Markov state-based models for reliability assessment of complex safety systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Levitin, Gregory & Xing, Liudong & Haim, Hanoch Ben & Dai, Yuanshun, 2019. "Optimal structure of series system with 1-out-of-n warm standby subsystems performing operation and rescue functions," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 523-531.
    4. Piriou, Pierre-Yves & Faure, Jean-Marc & Lesage, Jean-Jacques, 2017. "Generalized Boolean logic Driven Markov Processes: A powerful modeling framework for Model-Based Safety Analysis of dynamic repairable and reconfigurable systems," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 57-68.
    5. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    6. Ola Tannous & Liudong Xing & Rui Peng & Min Xie, 2014. "Reliability of warm-standby systems subject to imperfect fault coverage," Journal of Risk and Reliability, , vol. 228(6), pages 606-620, December.
    7. Nejad, Hamed S. & Parhizkar, Tarannom & Mosleh, Ali, 2022. "Automatic generation of event sequence diagrams for guiding simulation based dynamic probabilistic risk assessment (SIMPRA) of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Daochuan Ge & Meng Lin & Yanhua Yang & Ruoxing Zhang & Qiang Chou, 2015. "Reliability analysis of complex dynamic fault trees based on an adapted K.D. Heidtmann algorithm," Journal of Risk and Reliability, , vol. 229(6), pages 576-586, December.
    9. Desgeorges, Loïc & Piriou, Pierre-Yves & Lemattre, Thibault & Chraibi, Hassane, 2021. "Formalism and semantics of PyCATSHOO: A simulator of distributed stochastic hybrid automata," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    10. Taleb-Berrouane, Mohammed & Khan, Faisal & Amyotte, Paul, 2020. "Bayesian Stochastic Petri Nets (BSPN) - A new modelling tool for dynamic safety and reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. Michel Batteux & Tatiana Prosvirnova & Antoine Rauzy, 2017. "AltaRica 3.0 assertions: The whys and wherefores," Journal of Risk and Reliability, , vol. 231(6), pages 691-700, December.
    12. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Co-optimization of state dependent loading and mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 151-158.
    13. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:236:y:2022:i:1:p:209-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.