IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v233y2019i5p747-760.html
   My bibliography  Save this article

Reliability modeling for a discrete time multi-state system with random and dependent transition probabilities

Author

Listed:
  • Linmin Hu
  • Rui Peng

Abstract

In a random environment, state transition probabilities of a multi-state system can change as the environment changes. Thus, a dynamic reliability model with random and dependent transition probabilities is developed for non-repairable discrete-time multi-state system in this article. The dependence among the random state transition probabilities of the system is modeled by a copula function. By probability argument and random process theory, we obtain explicit expressions of some reliability characteristics and joint survival function of random time spent by the system in all working states (partially and completely working states). A special case is considered when the state transition probabilities are dependent random variables with power distribution, and the dependence structure is modeled by Farlie–Gumbel–Morgenstern copula. Numerical examples are also presented to demonstrate the developed model and perform a comparison for the models with random and fixed transition probabilities.

Suggested Citation

  • Linmin Hu & Rui Peng, 2019. "Reliability modeling for a discrete time multi-state system with random and dependent transition probabilities," Journal of Risk and Reliability, , vol. 233(5), pages 747-760, October.
  • Handle: RePEc:sae:risrel:v:233:y:2019:i:5:p:747-760
    DOI: 10.1177/1748006X18819920
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X18819920
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X18819920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Goliforushani & M. Asadi, 2008. "On the discrete mean past lifetime," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(2), pages 209-217, September.
    2. Li, Y.F. & Peng, R., 2014. "Availability modeling and optimization of dynamic multi-state series–parallel systems with random reconfiguration," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 47-57.
    3. Eryilmaz, Serkan, 2016. "A reliability model for a three-state degraded system having random degradation rates," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 59-63.
    4. Rui Peng & Qingqinq Zhai & Liudong Xing & Jun Yang, 2016. "Reliability analysis and optimal structure of series-parallel phased-mission systems subject to fault-level coverage," IISE Transactions, Taylor & Francis Journals, vol. 48(8), pages 736-746, August.
    5. Du, Shijia & Zeng, Zhiguo & Cui, Lirong & Kang, Rui, 2017. "Reliability analysis of Markov history-dependent repairable systems with neglected failures," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 134-142.
    6. Fan, Mengfei & Zeng, Zhiguo & Zio, Enrico & Kang, Rui, 2017. "Modeling dependent competing failure processes with degradation-shock dependence," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 422-430.
    7. Serkan Eryilmaz, 2016. "Discrete time cold standby repairable system: Combinatorial analysis," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(24), pages 7399-7405, December.
    8. Lisnianski, Anatoly & Ding, Yi, 2009. "Redundancy analysis for repairable multi-state system by using combined stochastic processes methods and universal generating function technique," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1788-1795.
    9. Zhu, Xiaoyan & Boushaba, Mahmoud & Coit, David W. & Benyahia, Azzeddine, 2017. "Reliability and importance measures for m-consecutive-k, l-out-of-n system with non-homogeneous Markov-dependent components," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Xiao & Minhao Cao & Gang Kou & Xiaojun Yuan, 2021. "Optimal element allocation and sequencing of multi-state series systems with two levels of performance sharing," Journal of Risk and Reliability, , vol. 235(2), pages 282-292, April.
    2. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    4. Ling, Xiaoliang & Wei, Yinzhao & Si, Shubin, 2019. "Reliability optimization of k-out-of-n system with random selection of allocative components," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 186-193.
    5. Wang, Guanjun & Duan, Fengjun & Zhou, Yifan, 2018. "Reliability evaluation of multi-state series systems with performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 58-63.
    6. Xiao, Hui & Shi, Daimin & Ding, Yi & Peng, Rui, 2016. "Optimal loading and protection of multi-state systems considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 88-95.
    7. Heping Jia & Rui Peng & Yi Ding & Yonghua Song, 2019. "Reliability of demand-based warm standby system with common bus performance sharing," Journal of Risk and Reliability, , vol. 233(4), pages 580-592, August.
    8. Cheng, Chen & Yang, Jun & Li, Lei, 2020. "Reliability assessment of multi-state phased mission systems with common bus performance sharing considering transmission loss and performance storage," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    9. Yu, Huan & Yang, Jun & Mo, Huadong, 2014. "Reliability analysis of repairable multi-state system with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 90-96.
    10. Funda Iscioglu, 2017. "Dynamic performance evaluation of multi – state systems under non – homogeneous continuous time Markov process degradation using lifetimes in terms of order statistics," Journal of Risk and Reliability, , vol. 231(3), pages 255-264, June.
    11. Li, Jingkui & Lu, Yuze & Liu, Xiaona & Jiang, Xiuhong, 2023. "Reliability analysis of cold-standby phased-mission system based on GO-FLOW methodology and the universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    12. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2017. "Optimal loading of series parallel systems with arbitrary element time-to-failure and time-to-repair distributions," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 34-44.
    13. Jia, Heping & Liu, Dunnan & Li, Yanbin & Ding, Yi & Liu, Mingguang & Peng, Rui, 2020. "Reliability evaluation of power systems with multi-state warm standby and multi-state performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    14. Cheng, Chen & Yang, Jun & Li, Lei, 2021. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state phased mission system with common bus performance sharing subjected to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Jafary, Bentolhoda & Fiondella, Lance, 2016. "A universal generating function-based multi-state system performance model subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 16-27.
    16. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    17. Tina Song, Wheyming & Lin, Peisyuan, 2018. "System reliability of stochastic networks with multiple reworks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 258-268.
    18. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2021. "Reliability analysis for systems based on degradation rates and hard failure thresholds changing with degradation levels," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Salehi, E.T. & Badía, F.G. & Asadi, M., 2012. "Preservation properties of a homogeneous Poisson process stopped at an independent random time," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 574-585.
    20. Antonio Di Crescenzo & Abdolsaeed Toomaj, 2022. "Weighted Mean Inactivity Time Function with Applications," Mathematics, MDPI, vol. 10(16), pages 1-30, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:233:y:2019:i:5:p:747-760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.