IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v41y2016i1p27-56.html
   My bibliography  Save this article

Using Data-Dependent Priors to Mitigate Small Sample Bias in Latent Growth Models

Author

Listed:
  • Daniel M. McNeish

    (University of Maryland)

Abstract

Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been widely developed for LGMs, and fully Bayesian methods, while not dependent on asymptotics, can encounter issues because the choice for the factor covariance matrix prior distribution has substantial influence with small samples. This tutorial discusses differences between LGMs and MEMs and demonstrates how data-dependent priors, an established class of methods that blend frequentist and Bayesian paradigms, can be implemented within M plus 7.1 to abate the small sample bias that is prevalent with LGM software while keeping additional programming to the bare minimum.

Suggested Citation

  • Daniel M. McNeish, 2016. "Using Data-Dependent Priors to Mitigate Small Sample Bias in Latent Growth Models," Journal of Educational and Behavioral Statistics, , vol. 41(1), pages 27-56, February.
  • Handle: RePEc:sae:jedbes:v:41:y:2016:i:1:p:27-56
    DOI: 10.3102/1076998615621299
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998615621299
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998615621299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Phil Ender, 2011. "xtmixed and Denominator Degrees of Freedom: Myth or Magic," CHI11 Stata Conference 3, Stata Users Group.
    2. D. B. Dunson, 2000. "Bayesian latent variable models for clustered mixed outcomes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 355-366.
    3. Bengt Muthén & Kerby Shedden, 1999. "Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm," Biometrics, The International Biometric Society, vol. 55(2), pages 463-469, June.
    4. Kenward, Michael G. & Roger, James H., 2009. "An improved approximation to the precision of fixed effects from restricted maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2583-2595, May.
    5. Daniel Stegmueller, 2013. "How Many Countries for Multilevel Modeling? A Comparison of Frequentist and Bayesian Approaches," American Journal of Political Science, John Wiley & Sons, vol. 57(3), pages 748-761, July.
    6. William Meredith & John Tisak, 1990. "Latent curve analysis," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 107-122, March.
    7. Richard Scheines & Herbert Hoijtink & Anne Boomsma, 1999. "Bayesian estimation and testing of structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 64(1), pages 37-52, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dingjing Shi & Xin Tong, 2017. "The Impact of Prior Information on Bayesian Latent Basis Growth Model Estimation," SAGE Open, , vol. 7(3), pages 21582440177, August.
    2. Lu, Zhenqiu (Laura) & Zhang, Zhiyong, 2014. "Robust growth mixture models with non-ignorable missingness: Models, estimation, selection, and application," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 220-240.
    3. Marco Guerra & Francesca Bassi & José G. Dias, 2020. "A Multiple-Indicator Latent Growth Mixture Model to Track Courses with Low-Quality Teaching," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 361-381, January.
    4. Ali Noudoostbeni & Kiran Kaur & Hashem Salarzadeh Jenatabadi, 2018. "A Comparison of Structural Equation Modeling Approaches with DeLone & McLean’s Model: A Case Study of Radio-Frequency Identification User Satisfaction in Malaysian University Libraries," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    5. Pietro Lovaglio & Mario Mezzanzanica, 2013. "Classification of longitudinal career paths," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(2), pages 989-1008, February.
    6. Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
    7. Jost Reinecke & Daniel Seddig, 2011. "Growth mixture models in longitudinal research," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 415-434, December.
    8. Sik-Yum Lee & Ye-Mao Xia, 2008. "A Robust Bayesian Approach for Structural Equation Models with Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 343-364, September.
    9. Che Wan Jasimah Bt Wan Mohamed Radzi & Hashem Salarzadeh Jenatabadi & Maisarah Binti Hasbullah, 2015. "Firm Sustainability Performance Index Modeling," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
    10. Casey Codd & Robert Cudeck, 2014. "Nonlinear Random-Effects Mixture Models for Repeated Measures," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 60-83, January.
    11. Lee, Sik-Yum & Song, Xin-Yuan, 2008. "On Bayesian estimation and model comparison of an integrated structural equation model," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4814-4827, June.
    12. Piotr Tarka, 2018. "An overview of structural equation modeling: its beginnings, historical development, usefulness and controversies in the social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 313-354, January.
    13. Pennoni, Fulvia & Romeo, Isabella, 2016. "Latent Markov and growth mixture models for ordinal individual responses with covariates: a comparison," MPRA Paper 72939, University Library of Munich, Germany.
    14. Li, Yun-Xian & Kano, Yutaka & Pan, Jun-Hao & Song, Xin-Yuan, 2012. "A criterion-based model comparison statistic for structural equation models with heterogeneous data," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 92-107.
    15. Hashem Salarzadeh Jenatabadi & Peyman Babashamsi & Datis Khajeheian & Nader Seyyed Amiri, 2016. "Airline Sustainability Modeling: A New Framework with Application of Bayesian Structural Equation Modeling," Sustainability, MDPI, vol. 8(11), pages 1-17, November.
    16. Daniel Y. Lee & Jeffrey R. Harring, 2023. "Handling Missing Data in Growth Mixture Models," Journal of Educational and Behavioral Statistics, , vol. 48(3), pages 320-348, June.
    17. Johan Oud & Manuel Voelkle, 2014. "Do missing values exist? Incomplete data handling in cross-national longitudinal studies by means of continuous time modeling," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3271-3288, November.
    18. Yih-Ing Hser & Haikang Shen & Chih-Ping Chou & Stephen C. Messer & M. Douglas Anglin, 2001. "Analytic Approaches for Assessing Long-Term Treatment Effects," Evaluation Review, , vol. 25(2), pages 233-262, April.
    19. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    20. Stephen Toit & Robert Cudeck, 2009. "Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable," Psychometrika, Springer;The Psychometric Society, vol. 74(1), pages 65-82, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:41:y:2016:i:1:p:27-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.