IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v34y2009i3p293-318.html
   My bibliography  Save this article

A Nonlinear Mixed Effects Model for Latent Variables

Author

Listed:
  • Jeffrey R. Harring

Abstract

The nonlinear mixed effects model for continuous repeated measures data has become an increasingly popular and versatile tool for investigating nonlinear longitudinal change in observed variables. In practice, for each individual subject, multiple measurements are obtained on a single response variable over time or condition. This structure can be adapted to examine the change in latent variables rather than modeling change in manifest variables. This article considers a nonlinear mixed effects model for describing nonlinear change of a latent construct over time, where the latent construct of interest is measured by multiple indicators gathered at each measurement occasion. To accomplish this, the nonlinear mixed effects model is modified to include a measurement model that explicitly expresses the relationship of the observed variables to the latent constructs. A method for marginal maximum likelihood estimation of this model is presented and discussed. An example using education data is provided to illustrate the utility of the model.

Suggested Citation

  • Jeffrey R. Harring, 2009. "A Nonlinear Mixed Effects Model for Latent Variables," Journal of Educational and Behavioral Statistics, , vol. 34(3), pages 293-318, September.
  • Handle: RePEc:sae:jedbes:v:34:y:2009:i:3:p:293-318
    DOI: 10.3102/1076998609332750
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998609332750
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998609332750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William Meredith, 1993. "Measurement invariance, factor analysis and factorial invariance," Psychometrika, Springer;The Psychometric Society, vol. 58(4), pages 525-543, December.
    2. Gerhard Arminger & Bengt Muthén, 1998. "A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the metropolis-hastings algorithm," Psychometrika, Springer;The Psychometric Society, vol. 63(3), pages 271-300, September.
    3. Stephen Toit & Robert Cudeck, 2009. "Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable," Psychometrika, Springer;The Psychometric Society, vol. 74(1), pages 65-82, March.
    4. Sik-Yum Lee & Hong-Tu Zhu, 2002. "Maximum likelihood estimation of nonlinear structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 67(2), pages 189-210, June.
    5. Ledyard Tucker, 1958. "Determination of parameters of a functional relation by factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(1), pages 19-23, March.
    6. William Meredith & John Tisak, 1990. "Latent curve analysis," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 107-122, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eldad Davidov & Stefan Thörner & Peter Schmidt & Stefanie Gosen & Carina Wolf, 2011. "Level and change of group-focused enmity in Germany: unconditional and conditional latent growth curve models with four panel waves," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 481-500, December.
    2. Guido Alessandri & Michele Vecchione & Brent Donnellan & John Tisak, 2013. "An Application of the LC-LSTM Framework to the Self-esteem Instability Case," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 769-792, October.
    3. Piotr Tarka, 2018. "An overview of structural equation modeling: its beginnings, historical development, usefulness and controversies in the social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 313-354, January.
    4. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    5. Johan Oud & Manuel Voelkle, 2014. "Do missing values exist? Incomplete data handling in cross-national longitudinal studies by means of continuous time modeling," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3271-3288, November.
    6. Jost Reinecke & Daniel Seddig, 2011. "Growth mixture models in longitudinal research," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 415-434, December.
    7. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    8. Takahiro Hoshino & Hiroshi Kurata & Kazuo Shigemasu, 2006. "A Propensity Score Adjustment for Multiple Group Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 691-712, December.
    9. Kenneth A. Bollen & Patrick J. Curran, 2004. "Autoregressive Latent Trajectory (ALT) Models A Synthesis of Two Traditions," Sociological Methods & Research, , vol. 32(3), pages 336-383, February.
    10. Pennoni, Fulvia & Romeo, Isabella, 2016. "Latent Markov and growth mixture models for ordinal individual responses with covariates: a comparison," MPRA Paper 72939, University Library of Munich, Germany.
    11. Chen, Yushun & Lin, Lian-Shin, 2010. "Structural equation-based latent growth curve modeling of watershed attribute-regulated stream sensitivity to reduced acidic deposition," Ecological Modelling, Elsevier, vol. 221(17), pages 2086-2094.
    12. Shelley A. Blozis, 2022. "A Latent Variable Mixed-Effects Location Scale Model with an Application to Daily Diary Data," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1548-1570, December.
    13. Terry Elrod & Gerald Häubl & Steven Tipps, 2012. "Parsimonious Structural Equation Models for Repeated Measures Data, with Application to the Study of Consumer Preferences," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 358-387, April.
    14. Marc J. M. H. Delsing & Johan H. L. Oud, 2008. "Analyzing reciprocal relationships by means of the continuous‐time autoregressive latent trajectory model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(1), pages 58-82, February.
    15. Lee, Sik-Yum & Song, Xin-Yuan, 2003. "Maximum likelihood estimation and model comparison of nonlinear structural equation models with continuous and polytomous variables," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 125-142, October.
    16. Chou, Chih-Ping & Yang, Dongyun & Pentz, Mary Ann & Hser, Yih-Ing, 2004. "Piecewise growth curve modeling approach for longitudinal prevention study," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 213-225, June.
    17. Marco Guerra & Francesca Bassi & José G. Dias, 2020. "A Multiple-Indicator Latent Growth Mixture Model to Track Courses with Low-Quality Teaching," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 361-381, January.
    18. Yih-Ing Hser & Haikang Shen & Chih-Ping Chou & Stephen C. Messer & M. Douglas Anglin, 2001. "Analytic Approaches for Assessing Long-Term Treatment Effects," Evaluation Review, , vol. 25(2), pages 233-262, April.
    19. Liat Ayalon, 2018. "Perceived Age Discrimination: A Precipitator or a Consequence of Depressive Symptoms?," The Journals of Gerontology: Series B, The Gerontological Society of America, vol. 73(5), pages 860-869.
    20. Stephen Toit & Robert Cudeck, 2009. "Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable," Psychometrika, Springer;The Psychometric Society, vol. 74(1), pages 65-82, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:34:y:2009:i:3:p:293-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.