IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v9y2013i4p108968.html
   My bibliography  Save this article

Efficient and Secure Routing Protocol Based on Encryption and Authentication for Wireless Sensor Networks

Author

Listed:
  • Jiliang Zhou

    (Shanghai University of International Business and Economics, Shanghai 201620, China)

Abstract

One concerned issue in the routing protocol for wireless sensor networks (WSNs) is how to provide with as much security to some special applications as possible. Another is how to make full use of the severely limited resource presented by WSNs. The existing routing protocols in the recent literatures focus either only on addressing security issues while expending much power or only on improving lifetime of network. None of them efficiently combine the above-mentioned two challenges to one integrated solutions. In this paper, we propose efficient and secure routing protocol based on encryption and authentication for WSNs: BEARP, which consists of three phases: neighbor discovery phase, routing discovery phase, and routing maintenance phase. BEARP encrypts all communication packets and authenticates the source nodes and the base station (BS), and it ensures the four security features including routing information confidentiality, authentication, integrity, and freshness. Furthermore, we still design routing path selection system, intrusion detection system, and the multiple-threaded process mechanism for BEARP. Thus, all the secure mechanisms are united together to effectively resist some typical attacks including selective forwarding attack, wormhole attacks, sinkhole attacks, and even a node captured. Our BEARP especially mitigates the loads of sensor nodes by transferring routing related tasks to BS, which not only maintains network wide energy equivalence and prolongs network lifetime but also improves our security mechanism performed uniquely by the secure BS. Simulation results show a favorable increase in performance for BEARP when compared with directed diffusion protocol and secure directed diffusion protocol in the presence of compromised nodes.

Suggested Citation

  • Jiliang Zhou, 2013. "Efficient and Secure Routing Protocol Based on Encryption and Authentication for Wireless Sensor Networks," International Journal of Distributed Sensor Networks, , vol. 9(4), pages 108968-1089, April.
  • Handle: RePEc:sae:intdis:v:9:y:2013:i:4:p:108968
    DOI: 10.1155/2013/108968
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1155/2013/108968
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/108968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:9:y:2013:i:4:p:108968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.