IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i9p1550147718803072.html
   My bibliography  Save this article

Toward improving indoor magnetic field–based positioning system using pedestrian motion models

Author

Listed:
  • Wenhua Shao
  • Haiyong Luo
  • Fang Zhao
  • Antonino Crivello

Abstract

Indoor magnetic field has attracted considerable attention in indoor location–based services, because of its pervasive and stable attributes. Generally, in order to harness the location features of the magnetic field, particle filters are introduced to simulate the possibilities of user locations. Real-time magnetic field fingerprints are matched with model fingerprints to adjust the location possibilities. However, the computation overheads of the magnetic matching are rather high, thus limiting their applications to mobile computing platforms and indoor location–based service providers that serve massive users. In order to reduce the computation overhead, the article presents a low-cost magnetic field fingerprint matching scheme. Based on the low-frequency features of the magnetic field, the scheme updates particle weights according to the mass center of the magnetic field deltas of pedestrian steps. The proposed low-cost scheme decreases the complexity of real-time fingerprints without harming the positioning performance. In order to further improve the positioning accuracy, not asking users to hold the smartphone in fixed attitudes, we also present a smartphone attitude detection method that enables the proposed scheme to automatically select proper fingerprints. Experiments convincingly reveal that the proposed scheme achieves about 1 m accuracy at 80% with low computation overheads.

Suggested Citation

  • Wenhua Shao & Haiyong Luo & Fang Zhao & Antonino Crivello, 2018. "Toward improving indoor magnetic field–based positioning system using pedestrian motion models," International Journal of Distributed Sensor Networks, , vol. 14(9), pages 15501477188, September.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:9:p:1550147718803072
    DOI: 10.1177/1550147718803072
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718803072
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718803072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:9:p:1550147718803072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.