IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i8p1550147718793853.html
   My bibliography  Save this article

A three-dimensional elasto-plastic dynamic response procedure for concrete-faced rockfill dams

Author

Listed:
  • Bin Xu
  • Yang Zhou
  • Jingmao Liu
  • Xiang Yu

Abstract

Equivalent linear dynamic analysis is the primary method of analysis for concrete-faced rockfill dams during earthquake. However, this method cannot be directly used to estimate permanent deformation during earthquake, which is important to evaluate the dynamic safety of concrete-faced rockfill dams. To bridge this gap, an elasto-plastic dynamic response procedure based on finite element method is presented to estimate the construction, impoundment, and dynamic characteristics of concrete-faced rockfill dams. This procedure involves a generalized plasticity model for rockfill materials and an ideal elasto-plastic model for interface between concrete face slab and rockfill material. The construction, impounding process, and seismic behavior of a 150-m-tall concrete-faced rockfill dam were simulated using seismic motion based on Chinese code for seismic design of hydraulic structures of hydropower project with the peak ground acceleration of 0.3 g as an excitation to validate the procedure. On the basis of the numerical simulation results of the step-by-step construction, reservoir impoundment and seismic response of a concrete-faced rockfill dam, dam settlement, joint deformation, stress, and deformation of slab were analyzed. The results indicate that the dam settlement and deformation of joint can be directly obtained by the procedure during earthquake. The construction, impoundment, and seismic analysis could be considered in one procedure.

Suggested Citation

  • Bin Xu & Yang Zhou & Jingmao Liu & Xiang Yu, 2018. "A three-dimensional elasto-plastic dynamic response procedure for concrete-faced rockfill dams," International Journal of Distributed Sensor Networks, , vol. 14(8), pages 15501477187, August.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:8:p:1550147718793853
    DOI: 10.1177/1550147718793853
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718793853
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718793853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:8:p:1550147718793853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.