IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i4p1550147718772541.html
   My bibliography  Save this article

Log-Viterbi algorithm applied on second-order hidden Markov model for human activity recognition

Author

Listed:
  • Yang Sung-Hyun
  • Keshav Thapa
  • M Humayun Kabir
  • Lee Hee-Chan

Abstract

Recognition of human activities is getting into the limelight among researchers in the field of pervasive computing, ambient intelligence, robotic, and monitoring such as assistive living, elderly care, and health care. Many platforms, models, and algorithms have been developed and implemented to recognize the human activities. However, existing approaches suffer from low-activity accuracy and high time complexity. Therefore, we proposed probabilistic log-Viterbi algorithm on second-order hidden Markov model that facilitates our algorithm by reducing the time complexity with increased accuracy. Second-order hidden Markov model is efficient relevance between previous two activities, current activity, and current observation that incorporate more information into recognition procedure. The log-Viterbi algorithm converts the products of a large number of probabilities into additions and finds the most likely activity from observation sequence under given model. Therefore, this approach maximizes the probability of activity recognition with improved accuracy and reduced time complexity. We compared our proposed algorithm among other famous probabilistic models such as Naïve Bayes, condition random field, hidden Markov model, and hidden semi-Markov model using three datasets in the smart home environment. The recognition possibility of our proposed method is significantly better in accuracy and time complexity than early proposed method. Moreover, this improved algorithm for activity recognition is much effective for almost all the dynamic environments such as assistive living, elderly care, healthcare applications, and home automation.

Suggested Citation

  • Yang Sung-Hyun & Keshav Thapa & M Humayun Kabir & Lee Hee-Chan, 2018. "Log-Viterbi algorithm applied on second-order hidden Markov model for human activity recognition," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:4:p:1550147718772541
    DOI: 10.1177/1550147718772541
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718772541
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718772541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:4:p:1550147718772541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.