IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i11p1550147718812355.html
   My bibliography  Save this article

Adaptive fitting algorithm of progressive interpolation for Loop subdivision surface

Author

Listed:
  • Li Zhang
  • Xiangrong She
  • Xianyu Ge
  • Jieqing Tan

Abstract

Subdivision surface and data fitting have been applied in data compression and data fusion a lot recently. Moreover, subdivision schemes have been successfully combined into multi-resolution analysis and wavelet analysis. This makes subdivision surfaces attract more and more attentions in the field of geometry compression. Progressive interpolation subdivision surfaces generated by approximating schemes were presented recently. When the number of original vertices becomes huge, the convergence speed becomes slow and computation complexity becomes huge. In order to solve these problems, an adaptive progressive interpolation subdivision scheme is presented in this article. The vertices of control mesh are classified into two classes: active vertices and fixed ones. When precision is given, the two classes of vertices are changed dynamically according to the result of each iteration. Only the active vertices are adjusted, thus the class of active vertices keeps running down while the fixed ones keep rising, which saves computation greatly. Furthermore, weights are assigned to these vertices to accelerate convergence speed. Theoretical analysis and numerical examples are also given to illustrate the correctness and effectiveness of the method.

Suggested Citation

  • Li Zhang & Xiangrong She & Xianyu Ge & Jieqing Tan, 2018. "Adaptive fitting algorithm of progressive interpolation for Loop subdivision surface," International Journal of Distributed Sensor Networks, , vol. 14(11), pages 15501477188, November.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718812355
    DOI: 10.1177/1550147718812355
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718812355
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718812355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718812355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.