IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i6p1550147717713626.html
   My bibliography  Save this article

Scale-free topology optimization for software-defined wireless sensor networks: A cyber-physical system

Author

Listed:
  • Ru Huang
  • Xiaoli Chu
  • Jie Zhang
  • Yu Hen Hu

Abstract

Due to the limited resource and vulnerability in wireless sensor networks, maximizing the network lifetime and improving network survivability have become the top priority problem in network topology optimization. This article presents a wireless sensor networks topology optimization model based on complex network theory and cyber-physical systems using software-defined wireless sensor network architecture. The multiple-factor-driven virtual force field and network division–oriented particle swarm algorithm are introduced into the deployment strategy of super-node for the implementation in wireless sensor networks topology initialization, which help to rationally allocate heterogeneous network resources and balance the energy consumption in wireless sensor networks. Furthermore, the preferential attachment scheme guided by corresponding priority of crucial sensors is added into scale-free structure for optimization in topology evolution process and for protection of vulnerable nodes in wireless sensor networks. Software-defined wireless sensor network–based functional architecture is adopted to optimize the network evolution rules and algorithm parameters using information cognition and flow-table configure mode. The theoretical analysis and experimental results demonstrate that the proposed wireless sensor networks topology optimization model possesses both the small-world effect and the scale-free property, which can contribute to extend the lifetime of wireless sensor networks with energy efficiency and improve the robustness of wireless sensor networks with structure invulnerability.

Suggested Citation

  • Ru Huang & Xiaoli Chu & Jie Zhang & Yu Hen Hu, 2017. "Scale-free topology optimization for software-defined wireless sensor networks: A cyber-physical system," International Journal of Distributed Sensor Networks, , vol. 13(6), pages 15501477177, June.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:6:p:1550147717713626
    DOI: 10.1177/1550147717713626
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717713626
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717713626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:6:p:1550147717713626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.