IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i4p1550147717700900.html
   My bibliography  Save this article

Synthesizing power management strategies for wireless sensor networks with UPPAAL-STRATEGO

Author

Listed:
  • Shengxin Dai
  • Mei Hong
  • Bing Guo

Abstract

Effective power management has become a key concern in the design of wireless sensor networks. Dynamic power management refers to strategies which selectively switch between several power states of a device during the runtime in order to achieve a tradeoff between power consumption and performance. In this article, we present a novel methodology that exploits current model-checking technology for automatic synthesis for dynamic power management. The generic system model for dynamic power management is modeled as a network of timed games. And the synthesis objectives are expressed as synthesis queries. Subsequently, automatic synthesis of power management strategies is performed by UPPAAL-STRATEGO with respect to the synthesis queries. Once a strategy has been constructed, its performance can be analyzed through statistical model-checking using the same tool. The modeling and synthesizing procedures are illustrated with a running example. Finally, the applicability of the methodology is assessed by synthesizing and evaluating a range of power management strategies for a concrete sensor node. Our methodology can be employed to help designers in constructing dynamic power management strategies for wireless sensor networks in practical applications.

Suggested Citation

  • Shengxin Dai & Mei Hong & Bing Guo, 2017. "Synthesizing power management strategies for wireless sensor networks with UPPAAL-STRATEGO," International Journal of Distributed Sensor Networks, , vol. 13(4), pages 15501477177, April.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:4:p:1550147717700900
    DOI: 10.1177/1550147717700900
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717700900
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717700900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:4:p:1550147717700900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.