IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v13y2017i11p1550147717743702.html
   My bibliography  Save this article

Optimization of acousto-ultrasonic sensor networks using genetic algorithms based on experimental and numerical data sets

Author

Listed:
  • Ryan Marks
  • Alastair Clarke
  • Carol A Featherston
  • Rhys Pullin

Abstract

Aircraft structural damage detection is becoming of increased importance. Technologies such as acousto-ultrasonic have been suggested for this application; however, an optimization strategy for sensor network design is required to ensure a high detection probability while minimizing sensor network mass. A methodology for optimizing acousto-ultrasonic transducer placement for adhesive disbond detection on metallic aerospace structures is presented. Experimental data sets were acquired using three-dimensional scanning laser vibrometry enabling in-plane and out-of-plane Lamb wave components to be considered. This approach employs a novel multi-sensor site strategy which is difficult to achieve with physical transducers. Different excitation frequencies and source–damage–sensor paths were considered. A fitness assessment criterion which compared baseline and damaged data sets using cross-correlation coefficients was developed empirically. Efficient sensor network optimization was achieved using a bespoke genetic algorithm for different network sizes with the effectiveness assessed and discussed. A comparable numerical data set was also produced using the local interaction simulation approach and optimized using the same methodology. Comparable results with those of the experimental data set indicated a good agreement. As such, the numerical approach demonstrates that acousto-ultrasonic sensor networks can be optimized using simulation (with some further refinement) during an aircraft design phase, being a useful tool to sensor network designers.

Suggested Citation

  • Ryan Marks & Alastair Clarke & Carol A Featherston & Rhys Pullin, 2017. "Optimization of acousto-ultrasonic sensor networks using genetic algorithms based on experimental and numerical data sets," International Journal of Distributed Sensor Networks, , vol. 13(11), pages 15501477177, November.
  • Handle: RePEc:sae:intdis:v:13:y:2017:i:11:p:1550147717743702
    DOI: 10.1177/1550147717743702
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147717743702
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147717743702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:13:y:2017:i:11:p:1550147717743702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.