IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v12y2016i8p1550147716662785.html
   My bibliography  Save this article

Adaptive-opportunistic Aloha: A media access control protocol for unmanned aerial vehicle–wireless sensor network systems

Author

Listed:
  • Ling Wang
  • Hanshang Li
  • Yingtao Jiang

Abstract

Recognizing that data collection in a unmanned aerial vehicle–wireless sensor network system is significantly different from that in a conventional wireless sensor network system, we propose a media access control protocol called adaptive-opportunistic Aloha for unmanned aerial vehicle–wireless sensor network systems. Based on a cross-layered design, this proposed adaptive-opportunistic Aloha protocol takes several important factors into consideration, including distribution of sensors, energy consumption, and transmission efficiency. In order for unmanned aerial vehicle to uniformly collect data from the ground sensors that are distributed in a random fashion, adaptive-opportunistic Aloha adopts a priority-based mechanism for channel assignment and collision avoidance, and importantly, the priority could be adaptively changed according to locations and distribution of the sensors. To improve energy efficiency, the adaptive-opportunistic Aloha can effectively put the sensors into the sleep mode when they do not need to send data, and they will be woken up by a beacon signal from the unmanned aerial vehicle for data transmission. Unlike opportunistic Aloha protocol, a well-known unmanned aerial vehicle–wireless sensor network media access control protocol, the adaptive-opportunistic Aloha adds a handshake into every time interval of transmission to help enhance the throughput with an acceptable level of system bit error rate. Experiment results have shown that the proposed media access control protocol can improve the overall throughput of unmanned aerial vehicle–wireless sensor network systems by more than 30% over opportunistic Aloha.

Suggested Citation

  • Ling Wang & Hanshang Li & Yingtao Jiang, 2016. "Adaptive-opportunistic Aloha: A media access control protocol for unmanned aerial vehicle–wireless sensor network systems," International Journal of Distributed Sensor Networks, , vol. 12(8), pages 15501477166, August.
  • Handle: RePEc:sae:intdis:v:12:y:2016:i:8:p:1550147716662785
    DOI: 10.1177/1550147716662785
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147716662785
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147716662785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:12:y:2016:i:8:p:1550147716662785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.