IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v49y2022i7p1893-1911.html
   My bibliography  Save this article

Anomalous human activity fluctuations from digital trace data signal flood inundation status

Author

Listed:
  • Hamed Farahmand
  • Wanqiu Wang
  • Ali Mostafavi
  • Mikel Maron

Abstract

The emergence of mobile platforms equipped with Global Positioning System technology enables real-time data collection affording opportunities for mining data applicable to rapid flood inundation assessment. The collected data can be employed to complement existing methods for rapid flood inundation assessment, such as remote sensing, to enhance situational awareness. In particular, telemetry-based digital trace data related to human activity have intrinsic advantages to be used for inundation assessment. In this study, we investigate the use of Mapbox telemetry data, which provides human activity indices with high spatial and temporal resolutions, for application in rapid flood inundation assessment. Using data from Hurricane Harvey in 2017 in Harris County, Texas, we (1) study anomalous fluctuations in human activities and analyze the differences in activity level between inundated and non-inundated areas and (2) investigate changes in the concentration of human activity, to explore the disruption of human activity as an indicator of flood inundation. Results show that both analyses can provide valuable rapid insights regarding flood inundation status. Anomalous activities can be significantly higher/lower in flooded areas compared with non-flooded areas. Also, the concentration of human activity during the flood propagation period across affected watersheds can be observed. This study contributes to the state of knowledge in smart flood resilience by investigating the application of ubiquitous telemetry-based digital trace data to enhance rapid flood inundation assessment. Accordingly, the use of such digital trace data could provide emergency managers and public officials with valuable insights to inform impact evaluation and response actions.

Suggested Citation

  • Hamed Farahmand & Wanqiu Wang & Ali Mostafavi & Mikel Maron, 2022. "Anomalous human activity fluctuations from digital trace data signal flood inundation status," Environment and Planning B, , vol. 49(7), pages 1893-1911, September.
  • Handle: RePEc:sae:envirb:v:49:y:2022:i:7:p:1893-1911
    DOI: 10.1177/23998083211069990
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083211069990
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083211069990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. F. Rosser & D. G. Leibovici & M. J. Jackson, 2017. "Rapid flood inundation mapping using social media, remote sensing and topographic data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 103-120, May.
    2. Zhang, Cheng & Fan, Chao & Yao, Wenlin & Hu, Xia & Mostafavi, Ali, 2019. "Social media for intelligent public information and warning in disasters: An interdisciplinary review," International Journal of Information Management, Elsevier, vol. 49(C), pages 190-207.
    3. Pogrebnyakov, Nicolai & Maldonado, Edgar, 2018. "Didn’t roger that: Social media message complexity and situational awareness of emergency responders," International Journal of Information Management, Elsevier, vol. 40(C), pages 166-174.
    4. Neal Marquez & Kiran Garimella & Ott Toomet & Ingmar G. Weber & Emilio Zagheni, 2019. "Segregation and sentiment: estimating refugee segregation and its effects using digital trace data," MPIDR Working Papers WP-2019-021, Max Planck Institute for Demographic Research, Rostock, Germany.
    5. Qing Deng & Yi Liu & Hui Zhang & Xiaolong Deng & Yefeng Ma, 2016. "A new crowdsourcing model to assess disaster using microblog data in typhoon Haiyan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1241-1256, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng-Chun Lee & Mikel Maron & Ali Mostafavi, 2022. "Community-scale big data reveals disparate impacts of the Texas winter storm of 2021 and its managed power outage," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaobing Yu & Hong Chen & Chenliang Li, 2019. "Evaluate Typhoon Disasters in 21st Century Maritime Silk Road by Super-Efficiency DEA," IJERPH, MDPI, vol. 16(9), pages 1-10, May.
    2. Acharya, Abhilash & Singh, Sanjay Kumar & Pereira, Vijay & Singh, Poonam, 2018. "Big data, knowledge co-creation and decision making in fashion industry," International Journal of Information Management, Elsevier, vol. 42(C), pages 90-101.
    3. Muhammad Ashraf Fauzi, 2023. "Social media in disaster management: review of the literature and future trends through bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 953-975, September.
    4. Clemens Havas & Bernd Resch, 2021. "Portability of semantic and spatial–temporal machine learning methods to analyse social media for near-real-time disaster monitoring," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2939-2969, September.
    5. Abhinav Kumar & Jyoti Prakash Singh & Yogesh K. Dwivedi & Nripendra P. Rana, 2022. "A deep multi-modal neural network for informative Twitter content classification during emergencies," Annals of Operations Research, Springer, vol. 319(1), pages 791-822, December.
    6. Turgut Acikara & Bo Xia & Tan Yigitcanlar & Carol Hon, 2023. "Contribution of Social Media Analytics to Disaster Response Effectiveness: A Systematic Review of the Literature," Sustainability, MDPI, vol. 15(11), pages 1-50, May.
    7. Samuel Fosso Wamba, 2022. "Humanitarian supply chain: a bibliometric analysis and future research directions," Annals of Operations Research, Springer, vol. 319(1), pages 937-963, December.
    8. Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.
    9. Nicole Olynk Widmar & Kendra Rash & Courtney Bir & Benjamin Bir & Jinho Jung, 2022. "The anatomy of natural disasters on online media: hurricanes and wildfires," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 961-998, January.
    10. Yu Zhang & Wenzhou Wu & Qi Wang & Fenzhen Su, 2017. "A Geo-Event-Based Geospatial Information Service: A Case Study of Typhoon Hazard," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    11. Jiexiong Duan & Weixin Zhai & Chengqi Cheng, 2020. "Crowd Detection in Mass Gatherings Based on Social Media Data: A Case Study of the 2014 Shanghai New Year’s Eve Stampede," IJERPH, MDPI, vol. 17(22), pages 1-14, November.
    12. Zhongping Zeng & Yujia Li & Jinyu Lan & Abdur Rahim Hamidi, 2021. "Utilizing User-Generated Content and GIS for Flood Susceptibility Modeling in Mountainous Areas: A Case Study of Jian City in China," Sustainability, MDPI, vol. 13(12), pages 1-18, June.
    13. Mingjun Ma & Qiang Gao & Zishuang Xiao & Xingshuai Hou & Beibei Hu & Lifei Jia & Wenfang Song, 2023. "Analysis of public emotion on flood disasters in southern China in 2020 based on social media data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1013-1033, September.
    14. Bertoli, Simone & Ozden, Caglar & Packard, Michael, 2021. "Segregation and internal mobility of Syrian refugees in Turkey: Evidence from mobile phone data," Journal of Development Economics, Elsevier, vol. 152(C).
    15. Shangjia Dong & Tianbo Yu & Hamed Farahmand & Ali Mostafavi, 2022. "Predictive multi-watershed flood monitoring using deep learning on integrated physical and social sensors data," Environment and Planning B, , vol. 49(7), pages 1838-1856, September.
    16. Faxi Yuan & Rui Liu, 2018. "Crowdsourcing for forensic disaster investigations: Hurricane Harvey case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1529-1546, September.
    17. Xin Hao & Heng Lyu & Ze Wang & Shengnan Fu & Chi Zhang, 2022. "Estimating the spatial-temporal distribution of urban street ponding levels from surveillance videos based on computer vision," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1799-1812, April.
    18. Vijendra Kumar & Hazi Md. Azamathulla & Kul Vaibhav Sharma & Darshan J. Mehta & Kiran Tota Maharaj, 2023. "The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management," Sustainability, MDPI, vol. 15(13), pages 1-33, July.
    19. Son, Jaebong & Lee, Hyung Koo & Jin, Sung & Lee, Jintae, 2019. "Content features of tweets for effective communication during disasters: A media synchronicity theory perspective," International Journal of Information Management, Elsevier, vol. 45(C), pages 56-68.
    20. Sahil & Sandeep Kumar Sood, 2021. "Bibliometric monitoring of research performance in ICT-based disaster management literature," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(1), pages 103-132, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:49:y:2022:i:7:p:1893-1911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.