IDEAS home Printed from https://ideas.repec.org/a/plo/ppat00/1009552.html
   My bibliography  Save this article

Intraspecific variation in immune gene expression and heritable symbiont density

Author

Listed:
  • Holly L Nichols
  • Elliott B Goldstein
  • Omid Saleh Ziabari
  • Benjamin J Parker

Abstract

Host genetic variation plays an important role in the structure and function of heritable microbial communities. Recent studies have shown that insects use immune mechanisms to regulate heritable symbionts. Here we test the hypothesis that variation in symbiont density among hosts is linked to intraspecific differences in the immune response to harboring symbionts. We show that pea aphids (Acyrthosiphon pisum) harboring the bacterial endosymbiont Regiella insecticola (but not all other species of symbionts) downregulate expression of key immune genes. We then functionally link immune expression with symbiont density using RNAi. The pea aphid species complex is comprised of multiple reproductively-isolated host plant-adapted populations. These ‘biotypes’ have distinct patterns of symbiont infections: for example, aphids from the Trifolium biotype are strongly associated with Regiella. Using RNAseq, we compare patterns of gene expression in response to Regiella in aphid genotypes from multiple biotypes, and we show that Trifolium aphids experience no downregulation of immune gene expression while hosting Regiella and harbor symbionts at lower densities. Using F1 hybrids between two biotypes, we find that symbiont density and immune gene expression are both intermediate in hybrids. We propose that in this system, Regiella symbionts are suppressing aphid immune mechanisms to increase their density, but that some hosts have adapted to prevent immune suppression in order to control symbiont numbers. This work therefore suggests that antagonistic coevolution can play a role in host-microbe interactions even when symbionts are transmitted vertically and provide a clear benefit to their hosts. The specific immune mechanisms that we find are downregulated in the presence of Regiella have been previously shown to combat pathogens in aphids, and thus this work also highlights the immune system’s complex dual role in interacting with both beneficial and harmful microbes.Author summary: Insects frequently form beneficial partnerships with heritable microbes that are passed from mothers to offspring. Natural populations exhibit a great deal of variation in the frequency of heritable microbes and in the within-host density of these infections. Uncovering the mechanisms underlying variation in host-microbe interactions is key to understanding how they evolve. We study a model host-microbe interaction: the pea aphid and a heritable bacterium that makes aphids resistant to fungal pathogens. We show that aphids harboring bacteria show sharply reduced expression of innate immune system genes, and that this leads to increased densities of symbionts. We further show that populations of aphids that live on different species of plants vary in differential immune gene expression and in the density of their symbiont infections. This study contributes to our mechanistic understanding of an important model of host-microbe symbiosis and suggests that hosts and heritable microbes are evolving antagonistically. This work also sheds light on how invertebrate immune systems evolve to manage the complex task of combatting harmful pathogens while accommodating potentially beneficial microbes.

Suggested Citation

  • Holly L Nichols & Elliott B Goldstein & Omid Saleh Ziabari & Benjamin J Parker, 2021. "Intraspecific variation in immune gene expression and heritable symbiont density," PLOS Pathogens, Public Library of Science, vol. 17(4), pages 1-21, April.
  • Handle: RePEc:plo:ppat00:1009552
    DOI: 10.1371/journal.ppat.1009552
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009552
    Download Restriction: no

    File URL: https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1009552&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.ppat.1009552?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:ppat00:1009552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plospathogens (email available below). General contact details of provider: https://journals.plos.org/plospathogens .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.