IDEAS home Printed from https://ideas.repec.org/a/plo/ppat00/1004816.html
   My bibliography  Save this article

Prospective Large-Scale Field Study Generates Predictive Model Identifying Major Contributors to Colony Losses

Author

Listed:
  • Merav Gleit Kielmanowicz
  • Alex Inberg
  • Inbar Maayan Lerner
  • Yael Golani
  • Nicholas Brown
  • Catherine Louise Turner
  • Gerald J R Hayes
  • Joan M Ballam

Abstract

Over the last decade, unusually high losses of colonies have been reported by beekeepers across the USA. Multiple factors such as Varroa destructor, bee viruses, Nosema ceranae, weather, beekeeping practices, nutrition, and pesticides have been shown to contribute to colony losses. Here we describe a large-scale controlled trial, in which different bee pathogens, bee population, and weather conditions across winter were monitored at three locations across the USA. In order to minimize influence of various known contributing factors and their interaction, the hives in the study were not treated with antibiotics or miticides. Additionally, the hives were kept at one location and were not exposed to potential stress factors associated with migration. Our results show that a linear association between load of viruses (DWV or IAPV) in Varroa and bees is present at high Varroa infestation levels (>3 mites per 100 bees). The collection of comprehensive data allowed us to draw a predictive model of colony losses and to show that Varroa destructor, along with bee viruses, mainly DWV replication, contributes to approximately 70% of colony losses. This correlation further supports the claim that insufficient control of the virus-vectoring Varroa mite would result in increased hive loss. The predictive model also indicates that a single factor may not be sufficient to trigger colony losses, whereas a combination of stressors appears to impact hive health.Author Summary: Roughly one third of the food supply relies on pollinating insects. The number of colony losses of the domesticated Honey Bee (Apis mellifera) has grown significantly in the past eight years, endangering pollination of crops like almonds. Recent research indicates that colony losses are influenced by a combination of several factors. We conducted an extensive and controlled study that allowed us to look at the contribution of different factors to colony loss. Results helped us build a predictive model showing that a single factor is often insufficient to trigger colony loss. Combination of stressors has shown to have greater impact on hive health; replication of the Deformed Wing Virus, stressful weather conditions, and Varroa destructor comprise the primary identified causes.

Suggested Citation

  • Merav Gleit Kielmanowicz & Alex Inberg & Inbar Maayan Lerner & Yael Golani & Nicholas Brown & Catherine Louise Turner & Gerald J R Hayes & Joan M Ballam, 2015. "Prospective Large-Scale Field Study Generates Predictive Model Identifying Major Contributors to Colony Losses," PLOS Pathogens, Public Library of Science, vol. 11(4), pages 1-20, April.
  • Handle: RePEc:plo:ppat00:1004816
    DOI: 10.1371/journal.ppat.1004816
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1004816
    Download Restriction: no

    File URL: https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1004816&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.ppat.1004816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fanny Mondet & Joachim R de Miranda & Andre Kretzschmar & Yves Le Conte & Alison R Mercer, 2014. "On the Front Line: Quantitative Virus Dynamics in Honeybee (Apis mellifera L.) Colonies along a New Expansion Front of the Parasite Varroa destructor," PLOS Pathogens, Public Library of Science, vol. 10(8), pages 1-15, August.
    2. Vetharaniam, I., 2012. "Predicting reproduction rate of varroa," Ecological Modelling, Elsevier, vol. 224(1), pages 11-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monica Vercelli & Luca Croce & Teresina Mancuso, 2020. "An Economic Approach to Assess the Annual Stock in Beekeeping Farms: The Honey Bee Colony Inventory Tool," Sustainability, MDPI, vol. 12(21), pages 1-14, November.
    2. Dimitri Breda & Davide Frizzera & Giulia Giordano & Elisa Seffin & Virginia Zanni & Desiderato Annoscia & Christopher J. Topping & Franco Blanchini & Francesco Nazzi, 2022. "A deeper understanding of system interactions can explain contradictory field results on pesticide impact on honey bees," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Teresina Mancuso & Luca Croce & Monica Vercelli, 2020. "Total Brood Removal and Other Biotechniques for the Sustainable Control of Varroa Mites in Honey Bee Colonies: Economic Impact in Beekeeping Farm Case Studies in Northwestern Italy," Sustainability, MDPI, vol. 12(6), pages 1-16, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:ppat00:1004816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plospathogens (email available below). General contact details of provider: https://journals.plos.org/plospathogens .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.