IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0261461.html
   My bibliography  Save this article

Genome-wide association analysis of anthracnose resistance in sorghum [Sorghum bicolor (L.) Moench]

Author

Listed:
  • Girma Mengistu
  • Hussein Shimelis
  • Ermias Assefa
  • Dagnachew Lule

Abstract

In warm-humid ago-ecologies of the world, sorghum [Sorghum bicolor (L.) Moench] production is severely affected by anthracnose disease caused by Colletotrichum sublineolum Henn. New sources of anthracnose resistance should be identified to introgress novel genes into susceptible varieties in resistance breeding programs. The objective of this study was to determine genome-wide association of Diversity Arrays Technology Sequencing (DArTseq) based single nucleotide polymorphisms (SNP) markers and anthracnose resistance genes in diverse sorghum populations for resistance breeding. Three hundred sixty-six sorghum populations were assessed for anthracnose resistance in three seasons in western Ethiopia using artificial inoculation. Data on anthracnose severity and the relative area under the disease progress curve were computed. Furthermore, the test populations were genotyped using SNP markers with DArTseq protocol. Population structure analysis and genome-wide association mapping were undertaken based on 11,643 SNPs with

Suggested Citation

  • Girma Mengistu & Hussein Shimelis & Ermias Assefa & Dagnachew Lule, 2021. "Genome-wide association analysis of anthracnose resistance in sorghum [Sorghum bicolor (L.) Moench]," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-15, December.
  • Handle: RePEc:plo:pone00:0261461
    DOI: 10.1371/journal.pone.0261461
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261461
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0261461&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0261461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaolei Liu & Meng Huang & Bin Fan & Edward S Buckler & Zhiwu Zhang, 2016. "Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies," PLOS Genetics, Public Library of Science, vol. 12(2), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Zhanwei Zhuang & Shaoyun Li & Rongrong Ding & Ming Yang & Enqin Zheng & Huaqiang Yang & Ting Gu & Zheng Xu & Gengyuan Cai & Zhenfang Wu & Jie Yang, 2019. "Meta-analysis of genome-wide association studies for loin muscle area and loin muscle depth in two Duroc pig populations," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-21, June.
    3. Guangbao Guo & Guoqi Qian & Lu Lin & Wei Shao, 2021. "Parallel inference for big data with the group Bayesian method," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 225-243, February.
    4. Gianola, Daniel & Fernando, Rohan L. & Schön, Chris-Carolin, 2020. "Inferring trait-specific similarity among individuals from molecular markers and phenotypes with Bayesian regression," Theoretical Population Biology, Elsevier, vol. 132(C), pages 47-59.
    5. Xiaojun Mao & Somak Dutta & Raymond K. W. Wong & Dan Nettleton, 2020. "Adjusting for Spatial Effects in Genomic Prediction," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 699-718, December.
    6. Prabin Bajgain & James A. Anderson, 2021. "Multi-Allelic Haplotype-Based Association Analysis Identifies Genomic Regions Controlling Domestication Traits in Intermediate Wheatgrass," Agriculture, MDPI, vol. 11(7), pages 1-15, July.
    7. Xubin Lu & Hui Jiang & Abdelaziz Adam Idriss Arbab & Bo Wang & Dingding Liu & Ismail Mohamed Abdalla & Tianle Xu & Yujia Sun & Zongping Liu & Zhangping Yang, 2023. "Investigating Genetic Characteristics of Chinese Holstein Cow’s Milk Somatic Cell Score by Genetic Parameter Estimation and Genome-Wide Association," Agriculture, MDPI, vol. 13(2), pages 1-17, January.
    8. Yue Xin & Lina Gao & Wenming Hu & Qi Gao & Bin Yang & Jianguo Zhou & Cuilian Xu, 2022. "Genome-Wide Association Study Based on Plant Height and Drought-Tolerance Indices Reveals Two Candidate Drought-Tolerance Genes in Sweet Sorghum," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    9. Uğur Sesiz, 2023. "Deciphering Genomic Regions and Putative Candidate Genes for Grain Size and Shape Traits in Durum Wheat through GWAS," Agriculture, MDPI, vol. 13(10), pages 1-17, September.
    10. Cox Lwaka Tamba & Yuan-Li Ni & Yuan-Ming Zhang, 2017. "Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-20, January.
    11. Alemayehu Teressa Negawo & Meki Shehabu Muktar & Ricardo Alonso Sánchez Gutiérrez & Ermias Habte & Alice Muchugi & Chris S. Jones, 2024. "A Genome-Wide Association Study of Biomass Yield and Feed Quality in Buffel Grass ( Cenchrus ciliaris L.)," Agriculture, MDPI, vol. 14(2), pages 1-27, February.
    12. Niloy Biswas & Anirban Bhattacharya & Pierre E. Jacob & James E. Johndrow, 2022. "Coupling‐based convergence assessment of some Gibbs samplers for high‐dimensional Bayesian regression with shrinkage priors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 973-996, July.
    13. Lanzhi Li & Xingfei Zheng & Jiabo Wang & Xueli Zhang & Xiaogang He & Liwen Xiong & Shufeng Song & Jing Su & Ying Diao & Zheming Yuan & Zhiwu Zhang & Zhongli Hu, 2023. "Joint analysis of phenotype-effect-generation identifies loci associated with grain quality traits in rice hybrids," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0261461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.