IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0257768.html
   My bibliography  Save this article

Risk prediction models for intensive care unit-acquired weakness in intensive care unit patients: A systematic review

Author

Listed:
  • Wei Zhang
  • Yun Tang
  • Huan Liu
  • Li ping Yuan
  • Chu chu Wang
  • Shu fan Chen
  • Jin Huang
  • Xin yuan Xiao

Abstract

Background and objectives: Intensive care unit-acquired weakness (ICU-AW) commonly occurs among intensive care unit (ICU) patients and seriously affects the survival rate and long-term quality of life for patients. In this systematic review, we synthesized the findings of previous studies in order to analyze predictors of ICU-AW and evaluate the discrimination and validity of ICU-AW risk prediction models for ICU patients. Methods: We searched seven databases published in English and Chinese language to identify studies regarding ICU-AW risk prediction models. Two reviewers independently screened the literature, evaluated the quality of the included literature, extracted data, and performed a systematic review. Results: Ultimately, 11 studies were considered for this review. For the verification of prediction models, internal verification methods had been used in three studies, and a combination of internal and external verification had been used in one study. The value for the area under the ROC curve for eight models was 0.7–0.923. The predictor most commonly included in the models were age and the administration of corticosteroids. All the models have good applicability, but most of the models are biased due to the lack of blindness, lack of reporting, insufficient sample size, missing data, and lack of performance evaluation and calibration of the models. Conclusions: The efficacy of most models for the risk prediction of ICU-AW among high-risk groups is good, but there was a certain bias in the development and verification of the models. Thus, ICU medical staff should select existing models based on actual clinical conditions and verify them before applying them in clinical practice. In order to provide a reliable basis for the risk prediction of ICU-AW, it is necessary that large-sample, multi-center studies be conducted in the future, in which ICU-AW risk prediction models are verified.

Suggested Citation

  • Wei Zhang & Yun Tang & Huan Liu & Li ping Yuan & Chu chu Wang & Shu fan Chen & Jin Huang & Xin yuan Xiao, 2021. "Risk prediction models for intensive care unit-acquired weakness in intensive care unit patients: A systematic review," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-14, September.
  • Handle: RePEc:plo:pone00:0257768
    DOI: 10.1371/journal.pone.0257768
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257768
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0257768&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0257768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karel G M Moons & Joris A H de Groot & Walter Bouwmeester & Yvonne Vergouwe & Susan Mallett & Douglas G Altman & Johannes B Reitsma & Gary S Collins, 2014. "Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies: The CHARMS Checklist," PLOS Medicine, Public Library of Science, vol. 11(10), pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaxin Li & Zijun Zhou & Jianyu Dong & Ying Fu & Yuan Li & Ze Luan & Xin Peng, 2021. "Predicting breast cancer 5-year survival using machine learning: A systematic review," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-23, April.
    2. Lukas Higi & Angela Lisibach & Patrick E Beeler & Monika Lutters & Anne-Laure Blanc & Andrea M Burden & Dominik Stämpfli, 2021. "External validation of the PAR-Risk Score to assess potentially avoidable hospital readmission risk in internal medicine patients," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
    3. Fazel, Seena & Burghart, Matthias & Fanshawe, Thomas & Gil, Sharon Danielle & Monahan, John & Yu, Rongqin, 2022. "The predictive performance of criminal risk assessment tools used at sentencing: Systematic review of validation studies," Journal of Criminal Justice, Elsevier, vol. 81(C).
    4. Fisaha Haile Tesfay & Kathryn Backholer & Christina Zorbas & Steven J. Bowe & Laura Alston & Catherine M. Bennett, 2022. "The Magnitude of NCD Risk Factors in Ethiopia: Meta-Analysis and Systematic Review of Evidence," IJERPH, MDPI, vol. 19(9), pages 1-19, April.
    5. Shamil D. Cooray & Lihini A. Wijeyaratne & Georgia Soldatos & John Allotey & Jacqueline A. Boyle & Helena J. Teede, 2020. "The Unrealised Potential for Predicting Pregnancy Complications in Women with Gestational Diabetes: A Systematic Review and Critical Appraisal," IJERPH, MDPI, vol. 17(9), pages 1-20, April.
    6. Helder Novais Bastos & Nuno S Osório & António Gil Castro & Angélica Ramos & Teresa Carvalho & Leonor Meira & David Araújo & Leonor Almeida & Rita Boaventura & Patrícia Fragata & Catarina Chaves & Pat, 2016. "A Prediction Rule to Stratify Mortality Risk of Patients with Pulmonary Tuberculosis," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-14, September.
    7. Antonio Palazón-Bru & María José Prieto-Castelló & David Manuel Folgado-de la Rosa & Ana Macanás-Martínez & Emma Mares-García & María de los Ángeles Carbonell-Torregrosa & Vicente Francisco Gil-Guillé, 2020. "Development, and Internal, and External Validation of a Scoring System to Predict 30-Day Mortality after Having a Traffic Accident Traveling by Private Car or Van: An Analysis of 164,790 Subjects and ," IJERPH, MDPI, vol. 17(24), pages 1-13, December.
    8. Paulien Van Acker & Wim Van Biesen & Evi V Nagler & Muguet Koobasi & Nic Veys & Jill Vanmassenhove, 2021. "Risk prediction models for acute kidney injury in adults: An overview of systematic reviews," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-14, April.
    9. Sara J Baart & Veerle Dam & Luuk J J Scheres & Johanna A A G Damen & René Spijker & Ewoud Schuit & Thomas P A Debray & Bart C J M Fauser & Eric Boersma & Karel G M Moons & Yvonne T van der Schouw & on, 2019. "Cardiovascular risk prediction models for women in the general population: A systematic review," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-14, January.
    10. Hans Van Remoortel & Hans Scheers & Emmy De Buck & Winne Haenen & Philippe Vandekerckhove, 2020. "Prediction modelling studies for medical usage rates in mass gatherings: A systematic review," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-20, June.
    11. Daniel J Stubbs & Lisa A Grimes & Ari Ercole, 2020. "Performance of cardiopulmonary exercise testing for the prediction of post-operative complications in non cardiopulmonary surgery: A systematic review," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-22, February.
    12. Vieira, Bruno Hebling & Pamplona, Gustavo Santo Pedro & Fachinello, Karim & Silva, Alice Kamensek & Foss, Maria Paula & Salmon, Carlos Ernesto Garrido, 2022. "On the prediction of human intelligence from neuroimaging: A systematic review of methods and reporting," Intelligence, Elsevier, vol. 93(C).
    13. Magdalena Lagerlund & Juan Merlo & Raquel Pérez Vicente & Sophia Zackrisson, 2015. "Does the Neighborhood Area of Residence Influence Non-Attendance in an Urban Mammography Screening Program? A Multilevel Study in a Swedish City," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-21, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0257768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.