IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0253302.html
   My bibliography  Save this article

Predicting malaria epidemics in Burkina Faso with machine learning

Author

Listed:
  • David Harvey
  • Wessel Valkenburg
  • Amara Amara

Abstract

Accurately forecasting the case rate of malaria would enable key decision makers to intervene months before the onset of any outbreak, potentially saving lives. Until now, methods that forecast malaria have involved complicated numerical simulations that model transmission through a community. Here we present the first data-driven malaria epidemic early warning system that can predict the 13-week case rate in a primary health facility in Burkina Faso. Using the extraordinarily high-fidelity data of infant consultations taken from the Integrated e-Diagnostic Approach (IeDA) system that has been rolled out throughout Burkina Faso, we train a combination of Gaussian Processes and Random Forest Regressors to estimate the weekly number of malaria cases over a 13 week period. We test our algorithm on historical epidemics and find that for our lowest threshold for an epidemic alert, our algorithm has 30% precision with > 99% recall at raising an alert. This rises to > 99% precision and 5% recall for the high alert threshold. Our two-tailed predictions have an average 1σ and 2σ precision of 5 cases and 30 cases respectively.

Suggested Citation

  • David Harvey & Wessel Valkenburg & Amara Amara, 2021. "Predicting malaria epidemics in Burkina Faso with machine learning," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-16, June.
  • Handle: RePEc:plo:pone00:0253302
    DOI: 10.1371/journal.pone.0253302
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253302
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0253302&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0253302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manal Alghamdi & Mouaz Al-Mallah & Steven Keteyian & Clinton Brawner & Jonathan Ehrman & Sherif Sakr, 2017. "Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ram D. Joshi & Chandra K. Dhakal, 2021. "Predicting Type 2 Diabetes Using Logistic Regression and Machine Learning Approaches," IJERPH, MDPI, vol. 18(14), pages 1-17, July.
    2. Wei-Ming Luo & Jing-Yang Su & Tong Xu & Zhong-Ze Fang, 2023. "Prevalence of Diabetic Retinopathy and Use of Common Oral Hypoglycemic Agents Increase the Risk of Diabetic Nephropathy—A Cross-Sectional Study in Patients with Type 2 Diabetes," IJERPH, MDPI, vol. 20(5), pages 1-13, March.
    3. Ying-Jen Chang & Kuo-Chuan Hung & Li-Kai Wang & Chia-Hung Yu & Chao-Kun Chen & Hung-Tze Tay & Jhi-Joung Wang & Chung-Feng Liu, 2021. "A Real-Time Artificial Intelligence-Assisted System to Predict Weaning from Ventilator Immediately after Lung Resection Surgery," IJERPH, MDPI, vol. 18(5), pages 1-14, March.
    4. Yi-Ching Lynn Ho & Vivian Shu Yi Lee & Moon-Ho Ringo Ho & Gladis Jing Lin & Julian Thumboo, 2021. "Towards a Parsimonious Pathway Model of Modifiable and Mediating Risk Factors Leading to Diabetes Risk," IJERPH, MDPI, vol. 18(20), pages 1-20, October.
    5. Sharan Srinivas, 2020. "A Machine Learning-Based Approach for Predicting Patient Punctuality in Ambulatory Care Centers," IJERPH, MDPI, vol. 17(10), pages 1-15, May.
    6. Pin-Wei Chen & Nathan A. Baune & Igor Zwir & Jiayu Wang & Victoria Swamidass & Alex W.K. Wong, 2021. "Measuring Activities of Daily Living in Stroke Patients with Motion Machine Learning Algorithms: A Pilot Study," IJERPH, MDPI, vol. 18(4), pages 1-16, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0253302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.