IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0230736.html
   My bibliography  Save this article

Stochastic simulation and statistical inference platform for visualization and estimation of transcriptional kinetics

Author

Listed:
  • Gennady Gorin
  • Mengyu Wang
  • Ido Golding
  • Heng Xu

Abstract

Recent advances in single-molecule fluorescent imaging have enabled quantitative measurements of transcription at a single gene copy, yet an accurate understanding of transcriptional kinetics is still lacking due to the difficulty of solving detailed biophysical models. Here we introduce a stochastic simulation and statistical inference platform for modeling detailed transcriptional kinetics in prokaryotic systems, which has not been solved analytically. The model includes stochastic two-state gene activation, mRNA synthesis initiation and stepwise elongation, release to the cytoplasm, and stepwise co-transcriptional degradation. Using the Gillespie algorithm, the platform simulates nascent and mature mRNA kinetics of a single gene copy and predicts fluorescent signals measurable by time-lapse single-cell mRNA imaging, for different experimental conditions. To approach the inverse problem of estimating the kinetic parameters of the model from experimental data, we develop a heuristic optimization method based on the genetic algorithm and the empirical distribution of mRNA generated by simulation. As a demonstration, we show that the optimization algorithm can successfully recover the transcriptional kinetics of simulated and experimental gene expression data. The platform is available as a MATLAB software package at https://data.caltech.edu/records/1287.

Suggested Citation

  • Gennady Gorin & Mengyu Wang & Ido Golding & Heng Xu, 2020. "Stochastic simulation and statistical inference platform for visualization and estimation of transcriptional kinetics," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-12, March.
  • Handle: RePEc:plo:pone00:0230736
    DOI: 10.1371/journal.pone.0230736
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230736
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0230736&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0230736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chee-Huat Linus Eng & Michael Lawson & Qian Zhu & Ruben Dries & Noushin Koulena & Yodai Takei & Jina Yun & Christopher Cronin & Christoph Karp & Guo-Cheng Yuan & Long Cai, 2019. "Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+," Nature, Nature, vol. 568(7751), pages 235-239, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. S. Vickovic & B. Lötstedt & J. Klughammer & S. Mages & Å Segerstolpe & O. Rozenblatt-Rosen & A. Regev, 2022. "SM-Omics is an automated platform for high-throughput spatial multi-omics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Zixiang Zhou & Yunshan Zhong & Zemin Zhang & Xianwen Ren, 2023. "Spatial transcriptomics deconvolution at single-cell resolution using Redeconve," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Haoyang Li & Juexiao Zhou & Zhongxiao Li & Siyuan Chen & Xingyu Liao & Bin Zhang & Ruochi Zhang & Yu Wang & Shiwei Sun & Xin Gao, 2023. "A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Wei Liu & Xu Liao & Ziye Luo & Yi Yang & Mai Chan Lau & Yuling Jiao & Xingjie Shi & Weiwei Zhai & Hongkai Ji & Joe Yeong & Jin Liu, 2023. "Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Johannes Wirth & Nina Huber & Kelvin Yin & Sophie Brood & Simon Chang & Celia P. Martinez-Jimenez & Matthias Meier, 2023. "Spatial transcriptomics using multiplexed deterministic barcoding in tissue," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Benjamin L. Walker & Qing Nie, 2023. "NeST: nested hierarchical structure identification in spatial transcriptomic data," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Zhaohui Cao & Wenlong Zuo & Lanxiang Wang & Junyu Chen & Zepeng Qu & Fan Jin & Lei Dai, 2023. "Spatial profiling of microbial communities by sequential FISH with error-robust encoding," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Ian Covert & Rohan Gala & Tim Wang & Karel Svoboda & Uygar Sümbül & Su-In Lee, 2023. "Predictive and robust gene selection for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Beibei Ru & Jinlin Huang & Yu Zhang & Kenneth Aldape & Peng Jiang, 2023. "Estimation of cell lineages in tumors from spatial transcriptomics data," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Rongbo Shen & Lin Liu & Zihan Wu & Ying Zhang & Zhiyuan Yuan & Junfu Guo & Fan Yang & Chao Zhang & Bichao Chen & Wanwan Feng & Chao Liu & Jing Guo & Guozhen Fan & Yong Zhang & Yuxiang Li & Xun Xu & Ji, 2022. "Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Zhiyuan Yuan & Yisi Li & Minglei Shi & Fan Yang & Juntao Gao & Jianhua Yao & Michael Q. Zhang, 2022. "SOTIP is a versatile method for microenvironment modeling with spatial omics data," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Lulu Shang & Xiang Zhou, 2022. "Spatially aware dimension reduction for spatial transcriptomics," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    16. Misa Minegishi & Takahiro Kuchimaru & Kaori Nishikawa & Takayuki Isagawa & Satoshi Iwano & Kei Iida & Hiromasa Hara & Shizuka Miura & Marika Sato & Shigeaki Watanabe & Akifumi Shiomi & Yo Mabuchi & Hi, 2023. "Secretory GFP reconstitution labeling of neighboring cells interrogates cell–cell interactions in metastatic niches," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Zhiyuan Yuan, 2024. "MENDER: fast and scalable tissue structure identification in spatial omics data," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Paul W Angel & Nadia Rajab & Yidi Deng & Chris M Pacheco & Tyrone Chen & Kim-Anh Lê Cao & Jarny Choi & Christine A Wells, 2020. "A simple, scalable approach to building a cross-platform transcriptome atlas," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-21, September.
    19. Jingyang Qian & Jie Liao & Ziqi Liu & Ying Chi & Yin Fang & Yanrong Zheng & Xin Shao & Bingqi Liu & Yongjin Cui & Wenbo Guo & Yining Hu & Hudong Bao & Penghui Yang & Qian Chen & Mingxiao Li & Bing Zha, 2023. "Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Wei Zhao & Kevin G. Johnston & Honglei Ren & Xiangmin Xu & Qing Nie, 2023. "Inferring neuron-neuron communications from single-cell transcriptomics through NeuronChat," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0230736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.