IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0221877.html
   My bibliography  Save this article

Effects of alterations in positron emission tomography imaging parameters on radiomics features

Author

Listed:
  • Rachel B Ger
  • Joseph G Meier
  • Raymond B Pahlka
  • Skylar Gay
  • Raymond Mumme
  • Clifton D Fuller
  • Heng Li
  • Rebecca M Howell
  • Rick R Layman
  • R Jason Stafford
  • Shouhao Zhou
  • Osama Mawlawi
  • Laurence E Court

Abstract

Radiomics studies require large patient cohorts, which often include patients imaged using different imaging protocols. We aimed to determine the impact of variability in imaging protocol parameters and interscanner variability using a phantom that produced feature values similar to those of patients. Positron emission tomography (PET) scans of a Hoffman brain phantom were acquired on GE Discovery 710, Siemens mCT, and Philips Vereos scanners. A standard-protocol scan was acquired on each machine, and then each parameter that could be changed was altered individually. The phantom was contoured with 10 regions of interest (ROIs). Values for 45 features with 2 different preprocessing techniques were extracted for each image. To determine the impact of each parameter on the reliability of each radiomics feature, the intraclass correlation coefficient (ICC) was calculated with the ROIs as the subjects and the parameter values as the raters. For interscanner comparisons, we compared the standard deviation of each radiomics feature value from the standard-protocol images to the standard deviation of the same radiomics feature from PET scans of 224 patients with non-small cell lung cancer. When the pixel size was resampled prior to feature extraction, all features had good reliability (ICC > 0.75) for the field of view and matrix size. The time per bed position had excellent reliability (ICC > 0.9) on all features. When the filter cutoff was restricted to values below 6 mm, all features had good reliability. Similarly, when subsets and iterations were restricted to reasonable values used in clinics, almost all features had good reliability. The average ratio of the standard deviation of features on the phantom scans to that of the NSCLC patient scans was 0.73 using fixed-bin-width preprocessing and 0.92 using 64-level preprocessing. Most radiomics feature values had at least good reliability when imaging protocol parameters were within clinically used ranges. However, interscanner variability was about equal to interpatient variability; therefore, caution must be used when combining patients scanned on equipment from different vendors in radiomics data sets.

Suggested Citation

  • Rachel B Ger & Joseph G Meier & Raymond B Pahlka & Skylar Gay & Raymond Mumme & Clifton D Fuller & Heng Li & Rebecca M Howell & Rick R Layman & R Jason Stafford & Shouhao Zhou & Osama Mawlawi & Lauren, 2019. "Effects of alterations in positron emission tomography imaging parameters on radiomics features," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-12, September.
  • Handle: RePEc:plo:pone00:0221877
    DOI: 10.1371/journal.pone.0221877
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221877
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0221877&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0221877?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Clément Bailly & Caroline Bodet-Milin & Solène Couespel & Hatem Necib & Françoise Kraeber-Bodéré & Catherine Ansquer & Thomas Carlier, 2016. "Revisiting the Robustness of PET-Based Textural Features in the Context of Multi-Centric Trials," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Amadeus Prenosil & Thilo Weitzel & Markus Fürstner & Michael Hentschel & Thomas Krause & Paul Cumming & Axel Rominger & Bernd Klaeser, 2020. "Towards guidelines to harmonize textural features in PET: Haralick textural features vary with image noise, but exposure-invariant domains enable comparable PET radiomics," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
    2. Ivan S Klyuzhin & Jessie F Fu & Andy Hong & Matthew Sacheli & Nikolay Shenkov & Michele Matarazzo & Arman Rahmim & A Jon Stoessl & Vesna Sossi, 2018. "Data-driven, voxel-based analysis of brain PET images: Application of PCA and LASSO methods to visualize and quantify patterns of neurodegeneration," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-20, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0221877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.